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About the Presenter

« Name: Dr. Marc Dupuis

 Degrees and date earned: Ph.D. Chemical Engineering 1984
« Main affiliation: GeniSim Inc. since 1994

« Second affiliation: Hatch since 2019

* Present position: Consultant since 1994

 Work experience: Mathematical modelling and design of H.H. cells
dealing with thermo-electric, thermo-electro-mechanical, CFD and MHD
phenomena.
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GeniSim Inc.
Clients list
« 3D ANSYS® T/E models:

Alcan, Alumax, Reynolds, Hoogovens, Alcoa, Noranda,

Sumitomo, Indal, Nalco, SAMI, Comalco, NEUI, Dubal,
GAMI, Inalum

 Dyna/Marc cell simulator:

Alcan, Alusuisse, VAW, Alumax, Reynolds, Hoogovens,

Hydro Aluminium, Alcoa, Rio Tinto

« MHD-Valdis:

SAMI, NEUI, Dubal, GAMI, Rusal, Hydro Aluminium,
Inalum
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Hatch’s
Center of Excellence
for Aluminium

- RS » Hatch is aleading company for the development, construction and

&ﬁﬂ-%wﬂﬁsﬂa , expansion of aluminium smelters, and is involved daily in smelters
operations support and sustaining capital projects.

« Hatch’s expertise is anchored in process knowledge and
experience covering all areas of the plant.

« To support its projects, Hatch has also developed specialized
numerical tools of different aspects of the Reduction Area,
including busbars thermo-electro-mechanical models, laminated
flexibles mechanical models, anode beam mechanical system
model, potroom ventilation models, potline and casthouse metal
flow logistics models, relining operations logistics models, etc.




Plan of the Presentation

The thermo-electric cell heat balance model
The magneto-hydrodynamic (MHD) cell stability model
The bath bubble flow driven CFD model

The alumina dissolution, dispersion and consumption CFD
model

The multi-physic model that is a merge of the above 4 models

The thermo-chemo-mechanical potshell deformation model

The potroom ventilation CFD model




Plan of the Presentation

The thermo-electro-mechanical anode and cathode models

The transient thermo-electro-mechanical cathode preheating
model

The transient thermo-mechanical cathode cooling model
The busbar and flexes thermo-electro-mechanical models
The lump parameters dynamic cell simulator model

The multi-zones dynamic cell simulator model

_+ The cell digital twin




Cell Heat Balance Model

 The cell heat balance model was developed to
address this problem: you want a) not b) not c)
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Cell Heat Balance Model

* Oldest type of cell mathematical model, this is a
sample of Haupin’s code from the 50’s

HFAT RAILLANCF AND
CeFe COMPUYTATINON

7 0 FH=N.74+ N NAE%72D
8 0 NA=(04025%(AH=24)+0s034%FLT+0,
R 1 165%71)%ANXFT*FH
O N NAS=N(RASHAACHRFT*FH
10 0 OC=(0eTN/R+N 25/ (R¥BXR) 11X (1 ++N
10 1 «NO%XFLT)#ACHFT*FH
11 0 QCO=(0s04%#TR=26,0)*¥TO*AQ/ 1440,
12 0 QR=({TB-TR)/(1807.N%RAB)

132 0 OCB=N 04?5*ACRXFT




Cell Heat Balance Model
« This is the time line of the development of Alcoa in

house cell heat balance model: HTBAL

Calculating resistances of lanes.

Ra = La/(k1aW1aP1a) + lza /(k2aW2aP2a) + 132 /(k3aW3aP3a) + Lia /(k4aWaaPua) + 1/(hsWiaPaa Fa)

Where k; is thermal conductivity of material i, P is the perimeter around the cell at this

position. hs is the combined radiation and convection heat transfer coefficient of the shell.
F; takes care of the fin effect of struts and cell reinforcements:

Fi=1+Es (AF /A\) =

Agr1s the surface area of fin like structures attached to the shell. As is the area of the shell,
Er is the fin efficiency.

Er= {tanh [(Zhs /k ty) *° W]}/ [(2ha /K tg) ©5 W]

Where: tr is the fin thickness, Wr is the average width (extending out from shell) of the
fin, k is the thermal conductivity of steel.

Ry and Re are calculated similar to R,.

Ry = l1a /(k1dW1dP14) + lad /(kadW2dP2d) + lad /(ksaW3dP3a) + 1/(hsW34P34 Fq) +
Laa / (KaaliaPaa) + lsa /(ksaWsdPsq) + lsd /(keaWeaPsa) + 1/(hsWeaPsa Fa)

Re = lle /(klewleple) + 12e /(kiewieple) + l3e /(kiewlepie) + ”(hswlepie FE)
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Ri= L /(kirWiiPig) + lag /(kafWaiPar) + Las /(karWaPag) + 1/(hsW3 P3¢ Fy) +
Laa / (KaaliaPag) + 1sa /(ksaWsaPsa) + led /(KeaWeaPsa) + 1/(hsWeaPsa Fa)

Figure 1.1: HTBAL Evolution Timeline
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Cell Heat Balance Model

* This led to the 2D in-house TE model HTBAL 2D
presented at the TMS 1990 by Jay Bruggeman:
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Figure 3: Element thermal conductivities in vicinity of ledge.

Figure 2: Finite element mesh for 2-D Hall-Heroult model.
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Cell Heat Balance Model

« HTBAL 2D is still in used in Alcoa smelters today:

: Select Parameters

Line Lmps

145000 amps
Pot Volcs

4.17 wvolts
ACD

53 mm
5 CE

217 %
Delta (Superheat)

Stubs = 18.46 kW Holes in Crust = 12,14 kW

11.33 kW Anode = 48.87 kW Crust = 17.24 kW

21.52 kW

L

Temperature

4.69635 °C
Bath Temperature
Bath Excess A1F3

8.15 & sxcess
Bath ¥ R1203

3.3 ¥, §
Bath % CaF2

5.65 wt_ %
Bath § MgF2

0.4 wit. §
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1.125 wt_§
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Total End = 44,31 kW Total Side = 238.94 kW 23.89 kW
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Cell Heat Balance Model

« | was hired by Alcan in 1984 to replace their 2D in
house model called 2D Thermal by 3D ANSYS models

155.174
355.522
455.696
555::87

656.044

756.218
856.392
956.566

BNCONEEN

3 SIMULATION ANODE DE GRANDE-BAIE SIMULATION ANODE DE GRANDE-BAIE
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Cell Heat Balance Model

* | then developed the 3D TE cathode side slice model,
here the Arvida step shell, side broken cell model

AUG 11 19!;9 AUG 11 19!;9
14:13:18 14:42:23
::iP?NE; EEEEEE ::i;l1 SSSSSS
ITER=15
‘ Dl;"l’:LDZ 33:15
S e ge
el , e v
ANGL=-90
2
- 194
l:l 386
l:l 482
- 578
l:l 674
l:l 770
- 866
1 1 - 8961
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Cell Heat Balance Model

 Then the cathode corner model, notice that ledge
profile convergence is part of the model solution

ANSYS 4.2
AUG 28 1986
15:29:53
PLOT NO. 1
PREP? ELEMENTS
MNUN=1

zu=1
DIST=1.75

XF=, 701
YF=1.3
2F=.673
ANGL=90
HIDDEN




Cell Heat Balance Model

« Finally | developed the full 3D cell quarter model with
liquid zone and busbar to compute current density

3 MU
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Cell Heat Balance Model
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Cell Heat Balance Model

« And finally the full cell and busbar

30

80

130
180
230
280
330
380
430
450
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Cell Heat Balance Model

« All the previous models are based on MAPDL, very
recently Hatch migrated the full cell quarter to ANSYS
Workbench/SpaceClaim, with improved physics
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Cell stability MHD Model

« The cell stability MHD model was developed to
address this problem: you don’t want this

(2,0) mode wave

Cell stability influenced
by Cx magnitude of Bz in
metal pad ._
Bz is the vertical =
component of the
magnetic fields

Cx is the gradient {0,1) mode wave
between the Bz positive ; {s
value in one end of cell rd 4 jﬁ_ﬁ
and the Bz negative |

value in the other end ‘ﬁ’

Coupling due to Cx



Cell stability MHD Model

« All MHD cell stability models start with current
density calculation. Jivry (TMS 1965) was the

|

Froz

A

en Bath

uuuuuuuuu




Cell stability MHD Model

 Then follows magnetic field calculation. Sele (TMS
1975) was a pioneer proposing to use dipoles.

q- I ) S
\JO000O00Q, ==
\ /D D-D'-_lﬁ—_l]-tl —D’/ a)x-coT-pOnenf.. -

Fig, 6 —Main magnetic flux in bottom shell.

- oY, . _ BY-1 Az2_ Az:
Hx= R H= 2 Chy )

g
Hy:-....-.H:—_.I.(.A_ .A.Z._.) ﬂ_
R R2 ‘
R
If R . H=-—B_
<Rad: H=q2d HRad
Fig. 3—Magnetic field from current carrying conductor.  Fig, 7—Dipole model of bottom shell and support beams. L.

c) Z-component,
Fig. B—Magnetic field in 150 kA cell,
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Cell stability MHD Model

« Urata was probably the first to publish MHD flows in 1975.
Kaiser publish this flow (left) in TMS 1981. Moreau-Ziegler
publish results of the Moreau-Evans MHD model in Trans B
1988 (right) and compared with the existing Kaiser model
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Cell stability MHD Model

* In the 80’s Alcan was using TURBU to compute similar MHD
flows, also computing the magnetic field with dipole
B = Bath-Metal Interface ——
=]
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Cell stability MHD Model

* In the early 90’s, | experimented using commercial software
for the MHD model, ANSYS for the Lorentz force




Cell stability MHD Model

* You get both the metal pad 3D current density solution and
the magnetic field solution in the same model

L CDZ {Alem™ 2} ANSYS 5.0

MAY 31 1993

13:26:05

PLOT NO. §
-6.743
-5.919
-5.094
-4.269
-3.444
-2.62
-1.795
-0.970145

-0.145412

0.67932

- coy {Alcm*2)

-1.435
-1.116
.797036
-0.478221
-0.15%407
0.153407
0.475221
0.797036
1.116
1.435

-0.505326
-0.391959
-0.278592
-0.165224
0.288245
0.401613
0.51498

~CDX {A/em"2)

i0 CEm BO0CRECER MEOOMACWN

ARVIDA STEP SHELL DESIGN MIDDLE OF METAL PAD

. BZ (Gauss)

2 BY (Gauss)

- BX (Gausse)

ARVIDA STEP SHELL DESIGN MIDDLE OF METAL PAD {SHEILDED!

i O RECCRECER MEOORAOWN
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Cell stability MHD Model

 So the Lorentz force can be directly computed on the same
mesh, the same mesh is used by Fidap for the metal flow

ANSYS 5.0 ARVIDA METAL FLOW VELOCITY

R L Uh AL A A A ocT 1 1993 VECTOR PLOT
16:23:09
PLOT NO. 19
MIN=0.353747 SCALE FACTOR
R R R U S A O Ma¥=124.959 9 S000E+92
L IR N N S S Y S Y B S U I B
\\\\\\ L B ] [ PV 0353747 MAX VECTOR
***** o 15.929 PLOTTED
J 0.2337E+00
e AT NODE 152
P RN AR B O B O B IR R T Y N
IR IBR
ijJ: 124,959 U.208E+00
9. 182E+Q0
L A A R O S R R I B A B A A B @ISGE*—@@
@ 130E+00
FORCE FIELD {(N/m3) : MIDDLE METAL LAYER 811%5:8?
6. S13E-B1
0. 260E-01

VIEW DIRECTION
VX - 100E+@l
VY - 100E+81
VZ ©8.100E+81
ANG @ . QQOE+@d

FIDAP 5 ©0
6 0ct 93
99:11:0@




Cell stability MHD Model

« Caete (AASTC 2004) developed a similar full 3D MHD model
using ANSYS and CFX using a much finer mesh

ELEMENTS

REAL NUM

X

ANSYS model CFX model




Cell stability MHD Model

« Obtained magnetic field on the left and metal flow on the
right
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Cell stability MHD Model

* NEU in China used a 3D ANSYS-CFX MHD model to study
the impact of irregular cathode technology (Trans B 2014)




Cell stability MHD Model

 NEU published a second study using their 3D ANSYS-CFX
MHD model still on irregular cathode design (Trans B 2016)

Ref. Vector

|z 10000 Am? _ é ggfg
RS RN IR Y EHE 49— T - gase
! L 0.000 0.024 0.048 0.072 0.097 0.121 0.145 0.007




Cell stability MHD Model

* Hydro Aluminium very recently presented a 3D MHD model
based on ANSYS and Fluent (Trans B 2018)

Central channel
Anode bottom & V=
Side channel S
& @ -
s - ‘ Ledge of long side
Ledge of short side ; ’ Y‘L

@) | (b)




Cell stability MHD Model

« Bath-Metal interface for the open bath boundary condition
in the Hydro Aluminium ANSYS/Fluent model
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Cell stability MHD Model

Full 3D MHD model are essentially only used to compute

the steady-state solution, yet the cell stability is a dynamic
problem, the specialized and optimized code MHD-Valdis is
fast enough to solve for the transient evolution of the wave

DH: -0.058 -0.038 -0.018 0.002 0.
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Cell stability MHD Model

« MHD-Valdis solves all the physic required to get to the
transient wave evolution. First the current density is solved

N [ | 2 ('n

Jy current in Al -14000 -9000 -4000 1000 6000 11000

1 1 1 - * %
newsooka  ua 1= 4gsHorizontal electric current in Al -1.5e4 A/m**2




Cell stability MHD Model
« Second the magnetic field is solved using a boundary

element formulation that doesn’t require air meshing
B T [ .

BZ: -0.0065 -00028 0.0008 06045 0.0082

== Bx, By =0.0250

| T (1

0.050 0.461 0.871 1.282 1.693 2.103
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Cell stability MHD Model

* Next the Lorentz force field is calculated and used to solve
the 2D shallow water formulated Navier-Stokes equation in

order to get the bath and metal flow
Force in electrolyte ,t=5 s I}j

— e
£ 0 FY2: -6.5E+01 -5.0E+00 55E+01 Velocity 0.2 V'sc: 2.00E-05 5.00E-04 9.80E-04 1.46E-03
£ Fe=a = e
- T 5 CEEEEERN
1 U e =33
¥ ‘?,.— : N
0 L
T-=222! s
1 ey I33888s:=2
s -7 6 5 -4 3 -2 -4 0 1 2 3 4 5 6 7
SY 300 \E Time= 10.5s
c _ o I | e
£ FY1: -8.5E+01 -1.0E+01 6.5E+01 Velocity 0.2 Vsc: 2.00E-05 4.60E-04 9.00E-04 1.34E-03
E = ==
— o S
> !
AR AR '
== 2T ===
i e ‘m““ SrEEP SR
g -7 6 5 -4 3 -2 4 0 1 2 3 4 5 6 7
SY300 VA Time= 10.5s
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Cell stability MHD Model

« The Lorentz force is very rarely displayed, what really
dictates the flow obtained is the rotational of the force field

M U Force field in the aluminium
Rotz: -69.74-51.57-33.40-15.23 2.94 21.11 39.29 57.46 75.63

y(m

L NI —— |
Vm: 3.7E-03 4.0E-02 7.7E-02 1.1E-01 1.5E-01 1.9E-01 2.2E-01 2.6E-01

y(m)

0.15m/s

8 -7 6 5 4 3 2 1 0 1 2 3 4 5
Al velocity




Cell stability MHD Model

« The dominant divergence part of the force field is globally
pushing the metal in downstream direction

'nterfacedH(m)_\l\l\lH\IHHII-
Force field in the aluminium

7 10 16 19 22
00393 00319 -0.0244 -0.0170 00096 -0.0021 0.0053 0.0127
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Cell stability MHD Model

« The possibility to run a fully nonlinear transient analysis of the flow after a
perturbation on the steady-state solution using a manageable amount of
CPU time is the key advantage of using MHD-Valdis MHD model

Interface and magnetic field
oscillations, 500 kA cell, ACD=0.035 m

1 &
0. 0.0E+00 pidarmii™d

700 00

Fourier spectrum

0.00E+00

Exponential Wave Decay

y = 0.00604 10003058
R? = 0.994723




Cell stability MHD Model

 The alternative is to do a perturbation analysis pionner by

Urata (1976) and Sele (Trans B 1977)
{2,0) mode wave ‘Ip Djem \ \ \¢

R \\\\‘ﬁ% =150 KA
o A NN
;

\ i\

e

\
NN

\ : e
0 "~ <5
Dy ] \ \ ’\7\\%
{0,1) mode Fave Os p 0" & \SP
'i L1 0_5 T ——
] r}‘ J?L*'? Do[

W 0 10 20 30 40

B Hy, cm

Coupling due to Cx 1} INTERNAL CIRCULATING CURRENT | 4—Stability limit for 150 kA prebake cells.
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Cell stability MHD Model

« Urata ( TMS 1985) presents an improved stability analysis,
Urata works was reproduced by Alcan after its publication

METAL PAD WAVE COMPARISON

@ ®
3
0 sec 12 sec @ Fa

3 sec 156 sec
6 sec @ 18 sec ; §
== ¥

2
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Measured Simulation Measured Simulation

@
24 sec
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— @ ¥
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@ 39 ssc
33 se

; : ; .

Measured Computer
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Cell stability MHD Model

« Application of linear stability analysis by Antille (TMS 2002)

0.02

—

Stability | 0.01 - :
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Il; :
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0.00 - Porees o E o st 8 o]
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e e i
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et 000 100 200 300
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Cell stability MHD Model

* In TMS 2018, Bojarevics presented his second linear cell

stability analysis:

Friction coefficient
balance
against the magnetic interaction

0.025

005

* Urata et al., Keikinzoku, 1976

* Sele Metall. Trans., 1977 E ooif

* Urata Light Metals, 1985

* Sneyd & Wang J. Fluid Mech., 1994

* Bojarevics & Romerio Eur. J. Mech. B, 1994
* Davidson & Lindsay J. Fluid Mech. 1998

* Tucs, Bojarevics & Pericleous J. Fluid Mech.2018 0.005

H(x,y,t)=H(x,y)-¢", o= o, +io,_
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0.005 -
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Bath Bubble Flow Driven CFD Model

 Dernedde ( TMS 1975) was the pioneer with his physical
model
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Bath Bubble Flow Driven CFD Model

* Chen published pictures of a similar physical model in JOM
November 1994 edition

Figure 7. The gas-induced flow pattern in the anode/ledge
space as obtained from an air/water model.




Bath Bubble Flow Driven CFD Model

« Shekhar and Evans ( Trans B 1994) developed a physical
model to study the bubble release of near vertical electrodes

ROTATION
POINT

ANODE
SUSPENSION
ROD

VERTICAL
CATHODE

CATHODE

ALUMINIUM

.

NN
\

\
N

4

Fig. 3—Schematic representation of a Hall cell with near-vertical
electrodes (Ref. 4).

Fig. i5— Schematic diagram of hubble-driven electralyte flow in the
ACG of a near-vertical (simulated) Hall cell.
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Bath Bubble Flow Driven CFD Model

« Solheim (1989) published results of a 2D CFD model
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Fig. 1. Flow pattern in the interpolar gap of an aluminium reduc-
tion cell.




Bath Bubble Flow Driven CFD Model

« Solheim ( TMS 2001) presented a 2D CFD model of vertical ACD

1200 A
Anode: | Cathode:
Ceramic oxide TiB,
¢ =9000 S/m 0=6.7"10°S/m
Bath:
0=210S/m
p = 2080 kg/m?
f=2.73 *103 kg/ms
Insulator\\-/ Metal:
o= 0=3310°S/m
Figure 3: Geometry and parameters. The aspect ratio of the sketch
is not correct. The depth of the model is 1 m.

Figure 5: Bath velocity vectors (0 - 0.25 m/s) and streamlines. The

bubble diameter is 3mm. The bottom of the cell is not shown. Figure 4: Electric potential (0-4.5 V) and resulting bubble tracks.
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Bath Bubble Flow Driven CFD Model

« Severo (TMS 2007) published results of a 3D full cell

combined bubble driven and MHD driven bath flow
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Bath Bubble Flow Driven CFD Model
 Feng (2010) presented both physical and 3D CFD models

Side Channel
Location (A)




Bath Bubble Flow Driven CFD Model

 Feng (2010) presented both physical and 3D CFD models
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Figure 6. Water velocity distribution and streamlines at a horizontal plane in middle of
ACD: (a) PIV measurement; (b) CFD simulation by modifying turbulent eddy viscosity;
(c) CFD simulation by modifying turbulence kinetic energy.
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Bath Bubble Flow Driven CFD Model

* Prof. Gao (2018) observed bubbles from a lab transparent cell
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Bath Bubble Flow Driven CFD Model

A coupled VOF-DPM CFD model can be used to represent
large bubble formation and the frequency of bubbles escape

° < ¢ { 5 ° < z. | 5 i ,Q z » 2 ° . @ .
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.O o© e © o o o 8 :(, OQ . o o_(’ 0O
’ O (#) » ’ (%) ° © Imm " .

[ ° b
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Fig. 10— Discrete-continuum transition if’ ¥y, > V: (@) before transforming: (b) after transforming.
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Bath Bubble Flow Driven CFD Model

 These figures of a VOF-DPM CFD model behavior are from
Sun (Trans B 2018)

(a)
L4 \ 4 L~ am -— 71 0.012
é 0.01
0.008
(b)
Y 0.012
3 0.01
0.008
()
] 0.012
Ww_é i
0.008
(d)
0.012
_VW s
0.008
Fig. 11— Large deformed bubble swallowing up the discrete micro-bubble if 0.5 < 2, < I: (a) before swallowing up: (b) after swallowing up. (e) 0.012
(a) S-S 0.008
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Bath Bubble Flow Driven CFD Model

 The voltage can then be solved to see the impact of bubbles
as donein Sun (Trans B 2017)

(a)

— n PRI P N SR Y PR
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X(m)

0.3 I
0.05
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Bath Bubble Flow Driven CFD Model

« Finally that type of model can be use to predict the bubble
release noise frequency as in Einarsrud (2016)
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The Alumina Dissolution CFD model

« Itis very hard to get experiential results as the only option is
to measure in actual cells, SINTEF reported some (TMS 1997)
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The Alumina Dissolution CFD model

« Zang (2014) presented a CFD-TPPBM alumina dissolution
model using bath flow generated using both MHD and bubble

Anode Point feeder Anode

g v 0 RS W =y Bath velocity (m/s)
- N0 ; o4
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The Alumina Dissolution CFD model

« Einarsrud (2016) presented a more advanced alumina
dissolution model that account for anode burn off shape
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The Alumina Dissolution CFD model

 But the physic of above model is incomplete, Gylver (TMS
2019) presented a paper of raft formation observations

Before addition

Fig. 2 Sample images from
video recording where the
crust has been broken between
the feeding and tap hole

for enhanced visualization.
The dark area is floating
undissolved alumina - e.g. a
raft. The time is set relative to
a single feeding event.
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The Alumina Dissolution CFD model
 Roger (TMS 2021) presented a paper of raft formation
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The Alumina Dissolution CFD model

* Boyarevics (TMS 2022) will presents this first attempt to
represent rafts in a full cell alumina dissolution model

Particles
® small

® medium
® large




The Multi-Physic Model

 The multi-physic model that is a merge of the above 4 models,

Einarsrud (2016) presented part of the interactions and the

multi-scales problematic
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0.5mm/ 0.1s :

Bubble
Nucleation

[s]

IC

Local current

Magnetic
part

System

current

l

Magnetic
fields

l

Shielding
of shell

|

Lorentz

0.01 1

30 h 4Anode changing
Metal tapping | Metal pad model
PPINg o m/90s
3 h 4Feedingcycle ~ Metal pad
adjustment
17 min
Metal pad ADM
Metal speed 60 m/300s
H / H Alumina
dissolution &
10 v transport
: Full cell bath
—> flow
v 1 1M0m/d5s Bath speed
VOF Bubble 10 H H Bath velo
15m/i10s L__J A
Bubble Bubble draft | i
release 4 Turb. wscoslm 1 |
| L B 1
01 1 ‘,10 ' 100 [m]

Qbal current & magnetic fD

force

Metal flow |----

Ledge

profile
Anode
Metal pad |——D shape

Bubble part Chemical
part
Local Demand
current feeding
| ¥
Chemical Species
reaction conc.
‘ H
Bubble
nucleation

Bubble flow

Interface |,
properties

Bulk |.i

Bath flow |

properties

Masnsssnnsnnnnsnnnmed

Fig. 8. Primary coupling behaviour of the three process parts.
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The Multi-Physic Model

 Renaudier (TMS 2018) presented Rio Tinto’s Alucell multi-

physic model concept:

-Electric potential => electric current
-Magnetic field and ferromagnetism

-Metal upheaval and flow
% I

. . Y
External process loop 1
CELL MESHING = -
E
+ surroundingpots & Internal process loop -';
conductors Hall n°1 z
e _/
/STEADY STATE \

n Y L ‘v'
ﬂl‘ransient MHD metal- Alumina distribution

bath interface

Alumina dissolution &
consumption

S~

Electric

3D ledge calculation

MHD-\'f'hermo- \

Figure 2: Full MHD cell geometry — P155 technology

But Alucell is much older, this is an
Alucell model presented by Richard

S

\ k .-E

(TMS 2008)
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The Multi-Physic Model

« Langlois (TMS 2015) and Renaudier (TMS 2018) presented
some Alucell results:

Downstream measurements

Downstream MHD-TE
. oy e
Standard Al203 feeding

[%] of av
R~ S
. 150

100
Optimized alumina feeding




The Multi-Physic Model

» Alucell was developed for Alusuisse/Alcan/Rio Tinto by EPFL,
they also publish, per example those bubble flow results (2021)

for future addition to Alucell physic -
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The Thermo-Chemo-Mechanical Potshell
Deformation Model

« Dewing (TMS 1975) publish this behavior law, he himself quote
Rapoport (1957) logz (expansion) =

Expahsion (%)

e
—

0.5

0.4

e
w

S
()

log (expansion at zero stress)

- 6.4 X 10-4 (stress)
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o My e StTtAA—agTIID

Expansion (%)
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SINTEF NTNU (2005)
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FIGURE 2
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« Zolochevsky (2005)
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The Thermo-Chemo-Mechanical Potshell
Deformation Model

« Waddington (JOM 1969) construct this cell to measure sodium
expansion of a full scale cathode block in operation




The Thermo-Chemo-Mechanical Potshell
Deformation Model

 Sun (TMS 2004) published this 3D quarter cathode model

25 250 500 800 960

100 400 650 900 h x| 5 11 17 <A

Figure 10: Thermal field distribution, 30 days after start-up (°C) Figure 11: Z-direction displacement with thermal and sodium
expansion (deformation enlarged x20),30 days after start-up (mm)




The Thermo-Chemo-Mechanical Potshell
Deformation Model

* | developed for Alcan a same type of model (1993)
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The Thermo-Chemo-Mechanical Potshell
Deformation Model

* Irepublished similar 3D quarter cathode model (TMS 2010)




The Potroom Ventilation CFD model

)

« Left results from physical model, right best results of in house 2D CFD model

e
rz}i,‘,\,_z e
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The Potroom Ventilation CFD model

« | obtained a much better match using CFX 4 advanced

turbulence model (1993)
@rRX -

The turbulence model
used is an asymmetric
RANS Reynolds Stress
model that in 2D
requires the solution of
6 equations

« This type of turbulence
model is not popular
anymore, | did not test
newer turbulence
models since then.
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The Potroom Ventilation CFD model

« Now modeling is obviously done in 3D like presented in
this Hatch paper: Vershenya (TMS 2011)

Nna wp aces,

Model Inlet:
Specified velocity profile

« Left boundary conditions for wind from potline end and right pressure
solution for wind from potline side



The Potroom Ventilation CFD model

« Now modeling is obviously done in 3D like presented in
this Hatch paper: Vershenya (TMS 2011)

Maximum HF
concentration at
1m above
operating floor
= 1.4 ppm



The Potroom Ventilation CFD model

* In 2017, | presented this combined TE-CFD model of the
hood HF captation model




The Thermo-Electro-Mechanical Models

* Richard (TMS 2000) is the original developer of that new
time of model that predict the contact resistance
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The Thermo-Electro-Mechanical Models
* | presented (TMS 2010) my own version of TEM model
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Figure 11 Cast iron/anode carbon interfa Figure 12: Current density distribution in the «  gigyre 10: Model predicted voltage drop for the pressure and
(MPa) temperature dependent contact resistance setup (V)




The Thermo-Electro-Mechanical Models

* | presented with Richard (2016) this new anode
stub/carbon connection design patented by Hatch
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The Transient Thermo-Electro-Mechanical
Cathode Preheating Model

» | developed for Alcan (1992) this type of preheat model

I 23y B
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The Transient Thermo-Electro-Mechanical
Cathode Preheating Model

« Arkhipov (TMS 2011) presented a gas preheat model

50.00
—— 4643 0
—— 4286 -

39.29 — 100

35.71 200

32.14 I

28.57 = o

25.00 |:|

2143 = 500
—— 17.86 600
1429 ] 700

10.71 - 500
— 7143

3.571 E 900
— 0.000 1000




The Transient Thermo-Mechanical
Cathode Cooling Model

« | developed that for Alton Tabereaux (TMS 2012)

ANSYS 12.0.1
JUN 4 2011
06:46:45
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The Transient Thermo-Mechanical
Cathode Cooling Model

« Hassan (TMS 2013) presented a similar cooling model




The Busbar and Flexes Thermo-Electro-
Mechanical Models

« Schneider (TMS 2009) presented for Hatch a thermo-
electro-CFD model of a busbar in a tunnel




The Busbar and Flexes Thermo-Electro-
Mechanical Models

« Schneider (TMS 2010) presented the stress analysis of

welds. Safety factor results are presented here.

Original concept Upgraded concept
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The Busbar and Flexes Thermo-Electro-
Mechanical Models

« Schneider (TMS 2020) presented a mechanical analysis
of flexibles involving large deflection and many contacts

ANSYS

DISPLACEMENT R19.2)

STEP=1 FEB 21 2020
SUB =12 18:59:23
TIME=1

DMX =.001552

52038bbF2_ePl_ISO_0_50_lin4div:6 wads, 15 sheets,gap=%gapWad*1000
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The Lump Parameters Dynamic Cell
Simulator Model

« Gran (1980) presented the dynamic model developed by
ASV (now Hydro Aluminium) to be used it as a digital
twil
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The Lump Parameters Dynamic Cell
Simulator Model

« TANG (TMS 1998) presented the dynamic model
developed for Kaiser by Wright (Ph.D. thesis 1993)
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The Lump Parameters Dynamic Cell

Simulator Model

* Gusberti (Ph.D. thesis 2014) presented the dynamic
model he developed for Caete
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The Lump Parameters Dynamic Cell
Simulator Model

* Gusberti (Ph.D. thesis 2014) presented the dynamic
model he developed for Caete
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The Lump Parameters Dynamic Cell
Simulator Model

Antille (2015) presented the dynamic model he

developed for Kannak using MATLAB-SIMULINK
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The Lump Parameters Dynamic Cell
Simulator Model

* | presented my own dynamic cell simulator Dyna/Marc at
TMS 1996, initially commercialized under another name
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The Lump Parameters Dynamic Cell
Simulator Model

« Eick (2007) presented a Dyna/Marc validation exercise
using arecorded data from a 3 hours shutdown event
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The Multi-Zones D ndarPic Cell Simulator
ode

 Thisis anew type of lump parameters model having
multiples liquid zones. From Wong (2021).
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Fig. 2. Proposed model discretization for a 36-anodes cell [ e
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The Multi-Zones D ndarpic Cell Simulator
ode

 This is a new type of lump parameters model having
multiples liquid zones. From Wong (2021).
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The Multi-Zones D ndarpic Cell Simulator
ode

« The same can be done to predict alumina concentration.
Wong (2019).

Figure 8 Spatial variations in dissolved alumina concentration (wt%b)




The Cell Digital Twin

 Hydro Aluminium (ASV) is by far the leader in that type
of model and cell control development (TMS 1975)
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The Cell Digital Twin

« Gran (1980) represented the digital twin concept while
presenting the ASV dynamic model
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1
6.

4
ALUMINA CONC.
(*h)

—

| ] &
Resistance = X Diff. .S
RM algorithm o

Model _
Adjustment of the state no.i [

18,
RESISTANCE
(rOL)

Calculated state
"Optimum state”

Desired controls

}

Y
Controller

5 MODEL
x xx”‘x""‘

B X X

Figure 4. Multivariable control system for aluminium reduction cells.
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The Cell Digital Twin

« Kolas (TMS 2010) represented the digital twin concept
for a third time
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The Cell Digital Twin

 Hydro Aluminium is regularly presenting the digital twin

G 7 TR

The concept of digital twins

Electrolysis cell as illustration Industrial experiernce

Hydro Digital twin for electrolysis cells

» Twin concept:

» Adigital twin based on our best models for
electrolysis is built into the control system of the
cells

« Soft sensor functionality: the twin predicts
parameters that are difficult/time-consuming to
measure

« Sensor/production data is used to calibrate the
digital twin model

+ Data analytics so far only for off-line analysis

* Use:

« The twin automatically controls addition of alumina,

temperature and acidity of the cells

Numerical simulation model based on: « Implemented in Karmay technology pilot as well as
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« Effect:
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« Advanced analytics algorithms
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The Cell Digital Twin

« Wong (2021) is planning to use his
multi-zones dynamic model as digital
twin using EKF (Extended Kalman Filter) s u— .
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