

IBAAS 2025

TECHNICAL LECTURE SERIES

# 4N HPA: SCIENCE, STRATEGY, AND SCALE – A MATERIAL AT THE CROSSROADS OF INNOVATION



DR PRIYANKA NAYAR

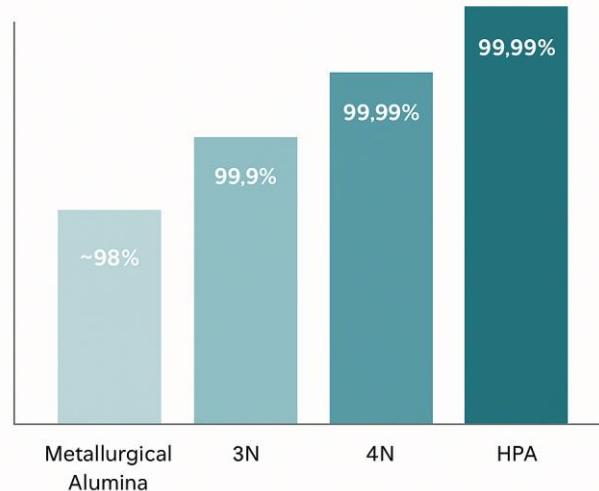


# Contents

- **Introduction & Objective**
- **High Purity Alumina (4N HPA)**
- **Why Purity Matters**
- **HPA Forms and their Uses**
- **Global Demand and Its Applications**
- **Current HPA Production Technologies**
- **Industrial Value Chain & Market Landscape**
- **Key Players & Cost Benchmarks**
- **Work Done on HPA at JNARDDC**
- **From Lab Success to Bench-Scale Reality**
- **Key Takeaways and The Road Ahead**

# Introduction & Objective

## Introduction


- **High Purity Alumina (4N, 99.99%)**
- **Chemical Stability, Optical transparency, high thermal resistance**
- **LED Phosphors, Lithium-Ion Batteries, Semiconductor substrates**

## Objectives

- **To introduce the science behind 4N HPA, its key properties and applications.**
- **To highlight the strategic and economic importance of developing domestic capability.**
- **To explore how investors and industry can leverage emerging opportunities.**
- **To present R&D efforts and breakthroughs achieved at JNARDDC, including a lab-scale validated process for producing 4N HPA.**

# High Purity Alumina (4N HPA)

## What is High Purity Alumina (HPA)?



| Grade        | Typical Use            |
|--------------|------------------------|
| 3N (99.9%)   | Ceramics, Phosphors    |
| 4N (99.99%)  | LED, Sapphire Glass    |
| 5N (99.999%) | Semiconductors, Optics |

| PERIODIC TABLE OF THE ELEMENTS |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |  |
|--------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|--|
|                                |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |  |
| 1                              | H   |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |  |
| 2                              | 124 | 2   |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |  |
| 3                              | Li  | Be  |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |  |
| 4                              | 223 | 257 |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |  |
| 5                              | Na  | Mg  |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |  |
| 6                              | 63  | 66  | 3   | 4   | 5   | 6   | 7   | 8   | 9   | 10  | 11  | 12  | 8   | 7   | 8   | 9   | 10  |  |
| 7                              | 129 | 140 | 149 | 189 | 142 | 109 | 199 | 182 | 109 | 131 | 183 | 105 | 233 | 88  | 85  | 42  | 51  |  |
| 8                              | 120 | 123 | 141 | 188 | 141 | 108 | 198 | 181 | 108 | 130 | 182 | 104 | 102 | 106 | 113 | 118 | 159 |  |
| 9                              | K   | Ca  | Sc  | Ti  | V   | Cr  | Mn  | Fe  | Co  | Ni  | Cu  | Zn  | Al  | Si  | P   | S   | Cl  |  |
| 10                             | 91  | 42  | 49  | 97  | 97  | 57  | 194 | 196 | 209 | 201 | 202 | 239 | 62  | 102 | 106 | 113 | 118 |  |
| 11                             | Rb  | Sr  | Sr  | Zr  | Na  | Mo  | Tc  | Ru  | Rh  | Pd  | Ag  | Cd  | In  | Sn  | Sb  | Te  | I   |  |
| 12                             | 91  | 42  | 59  | 97  | 37  | 194 | 196 | 209 | 201 | 202 | 239 | 244 | 236 | 296 | 209 | 298 | 234 |  |
| 13                             | Cs  | Ba  | Sn  | Ht  | Si  | W   | Re  | Os  | Ir  | Pt  | Au  | Hg  | Tl  | Pb  | Bi  | Po  | At  |  |
| 14                             | 103 | 502 | 504 | 516 | 572 | 539 | 538 | 564 | 569 | 561 | 576 | 574 | 774 | 788 | 713 | 300 |     |  |
| 15                             | Fr  | Ra  | Ac  | Rf  | Db  | Sg  | Bh  | Hs  | Mt  | Ds  | Rg  | Cn  | Nh  | Fl  | Mc  | Lv  | Ts  |  |
| 16                             | 101 | 108 | 107 | 108 | 111 | 118 | 118 | 132 | 198 | 199 | 102 | 143 | 153 | 158 | 162 | 158 | 154 |  |
| 17                             |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |  |
| 18                             |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |  |

|           |    |    |    |    |    |    |    |    |    |    |    |    |    |
|-----------|----|----|----|----|----|----|----|----|----|----|----|----|----|
| Lanthans  | La | Ce | Pr | Nd | Sm | Eu | Gd | Tb | Dy | Ho | Er | Tm | Lu |
|           | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 |
| Actinides | Ac | Th | Pa | U  | Np | Am | Cm | Bk | Cf | Es | Fm | Md | No |
|           | 37 | 48 | 49 | 50 | 51 | 52 | 59 | 54 | 55 | 56 | 57 | 58 | 59 |

# Why Purity Matters ?

Achieving high purity ensures that the following properties are maximized, allowing HPA to perform optimally in demanding applications:

- High melting point: ~2050 °C – suitable for extreme environments**
- Excellent hardness and chemical stability**
- High dielectric strength and thermal conductivity**
- Transparent to visible and infrared light (especially sapphire form)**
- Inert and non-reactive nature**

# HPA Forms and their Uses

The form and purity of HPA determine its application and market value

## HPA Forms and Functional Use

**Powdered HPA**



Used in ceramics, battery separators, and phosphors

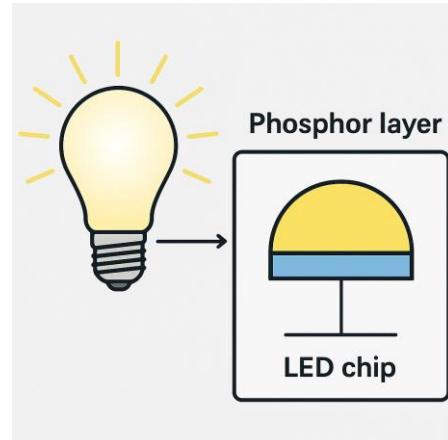
**Granular HPA**



For sintered components and crucibles

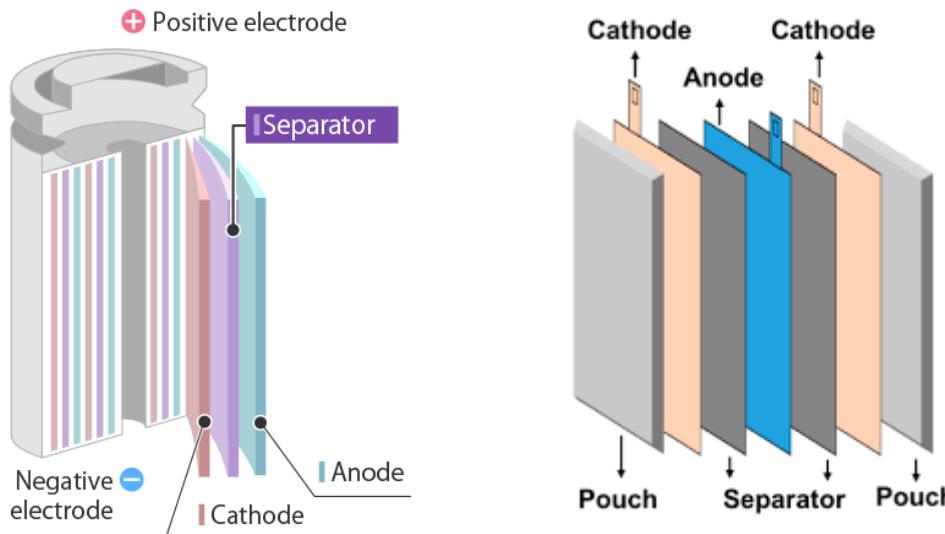
**Sapphire form  
(single crystal  $\text{Al}_2\text{O}_3$ )**




Used in LED substrates, watch crystals, and optical windows

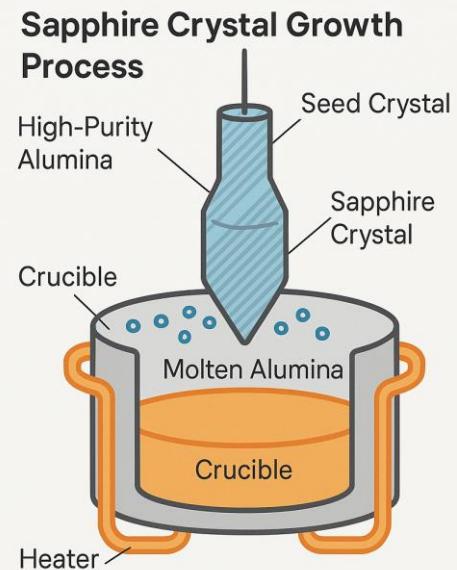
# Global Demand and Its Applications

# HPA use in LED Phosphors


## 4N HPA in LED Phosphors:

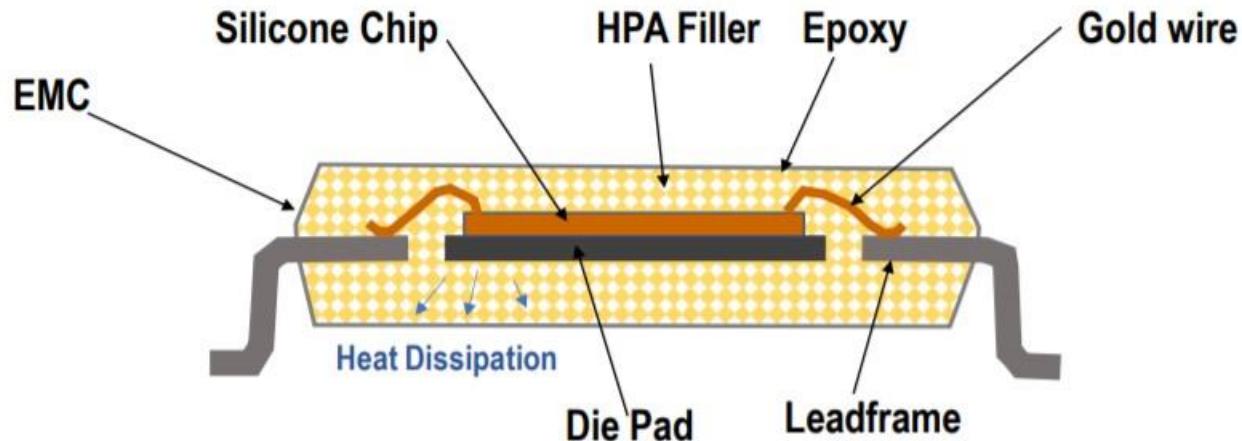
- **Application:** High-purity alumina (HPA) is used as a key component in the production of LED phosphors.
- **Role:** Enhances brightness and color efficiency in LED lights, making them more energy-efficient and long-lasting.
- **Market Demand:** As the LED industry grows due to energy-saving initiatives and lighting upgrades, the demand for HPA in this sector is expected to increase.




# HPA for Lithium Ion Batteries Separator

- **Application:** HPA is utilized in the production of separators for lithium-ion batteries, which are critical in electric vehicles (EVs) and portable electronic devices.
- **Role:** Provides high thermal stability, mechanical strength, and chemical resistance, improving battery life and safety.
- **Market Demand:** With the rise of electric vehicles and portable electronics, the demand for advanced battery technologies and separators is growing, driving the need for HPA.




# HPA for Sapphire Substrates

- **Application:** HPA is used to produce high-quality sapphire substrates for use in semiconductor and optical applications.
- **Role:** Provides a stable, high-quality substrate that is essential for the production of blue and white LEDs, as well as for use in advanced electronic devices.
- **Market Demand:** The continued advancement of the electronics and LED industries, alongside emerging applications in photonics, is driving the demand for sapphire substrates.

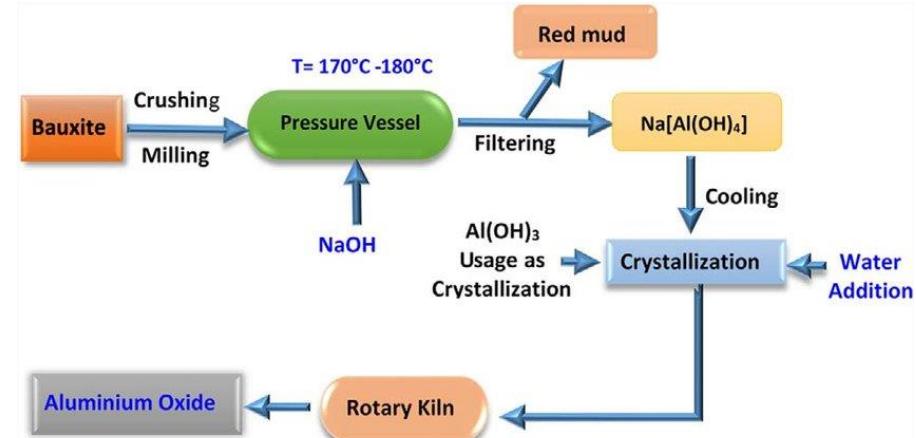


# HPA for Semiconductor and Optical Applications

- **Application:** HPA is used in the manufacturing of semiconductor devices and optical components, including lenses and windows for high-performance lasers.
- **Role:** Offers excellent purity, high thermal stability, and optical transparency, making it essential for next-generation electronic and optical devices.
- **Market Demand:** With the increasing demand for high-performance semiconductors in data centers, telecommunications, and emerging technologies like quantum computing, the need for HPA in these sectors is expected to grow.



# Current HPA Production Technologies


# Bayer's Process: Traditional Alumina Route

## Pros:

- **Mature Technology:** Well-established process with a global presence.
- **High Yield:** Efficient at producing alumina from bauxite.
- **Scalable:** Suitable for large-scale industrial production.

## Cons:

- **Energy-Intensive:** Requires significant energy for calcination.
- **Environmental Impact:** Large amounts of red mud (waste byproduct) are generated.
- **Limitations for HPA:** Not directly suited for high-purity alumina, additional purification steps are needed.



# Alkoxide Process

## Pros:

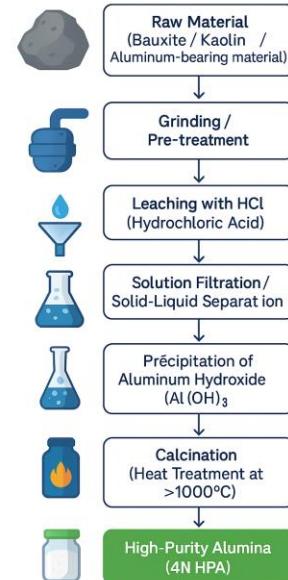
- **High Purity:** Direct production of HPA with minimal impurities.
- **Control over Purity:** Allows precise control over the purity level of alumina.
- **Suitability for Specialty Applications:** Ideal for producing ultra-high purity materials used in LEDs and semiconductors.

## Cons:

- **High Cost:** Requires expensive chemicals and energy for the reaction.
- **Scale-Up Challenges:** Less proven at industrial scale compared to Bayer process.
- **Complex Process:** Involves multiple steps requiring precise control.



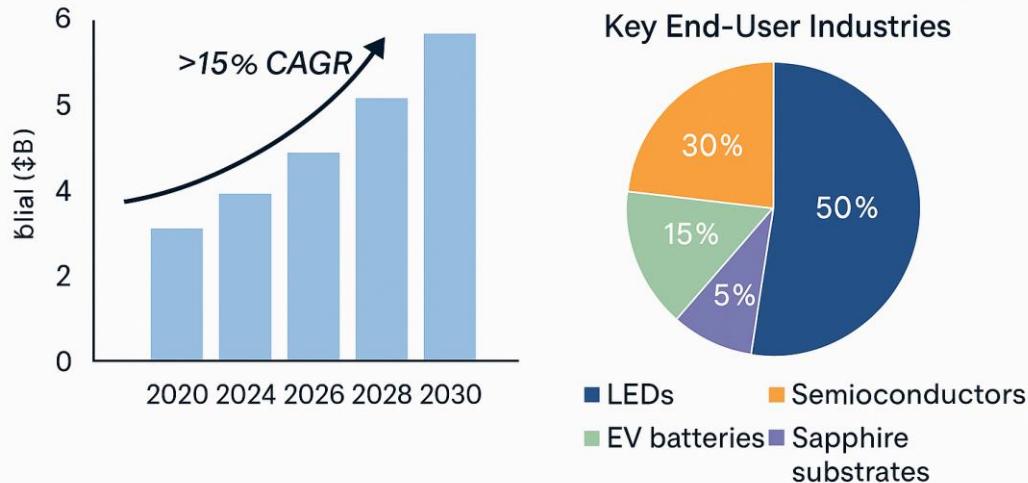
# Hydrothermal and Hydrochloric Acid Leaching


## Pros:

- **Efficient Extraction:** Effective for processing a variety of raw materials, including low-grade ores.
- **Flexible:** Can use alternative raw materials, not just bauxite.
- **Low Energy Consumption:** Potential for lower energy consumption compared to Bayer process.

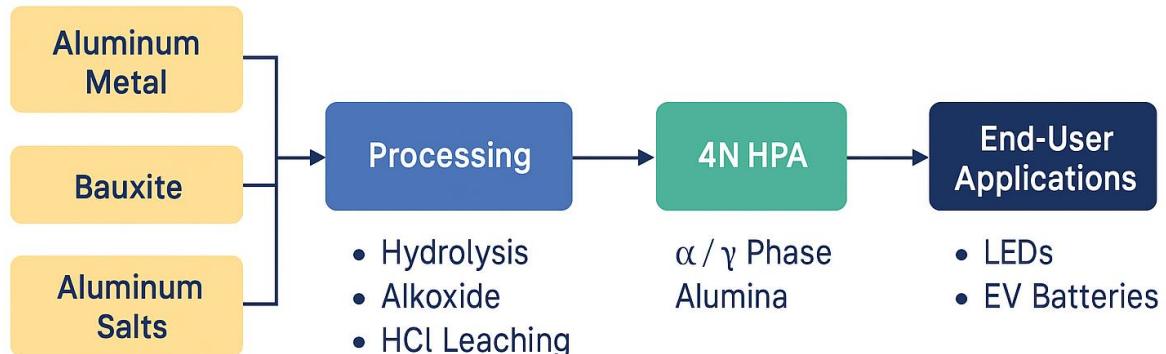
## Cons:

- **Complexity in Purification:** Requires additional purification steps to achieve high purity.
- **Corrosive Chemicals:** Use of hydrochloric acid can lead to equipment corrosion and environmental concerns.
- **Scalability Issues:** Less established for large-scale commercial production.

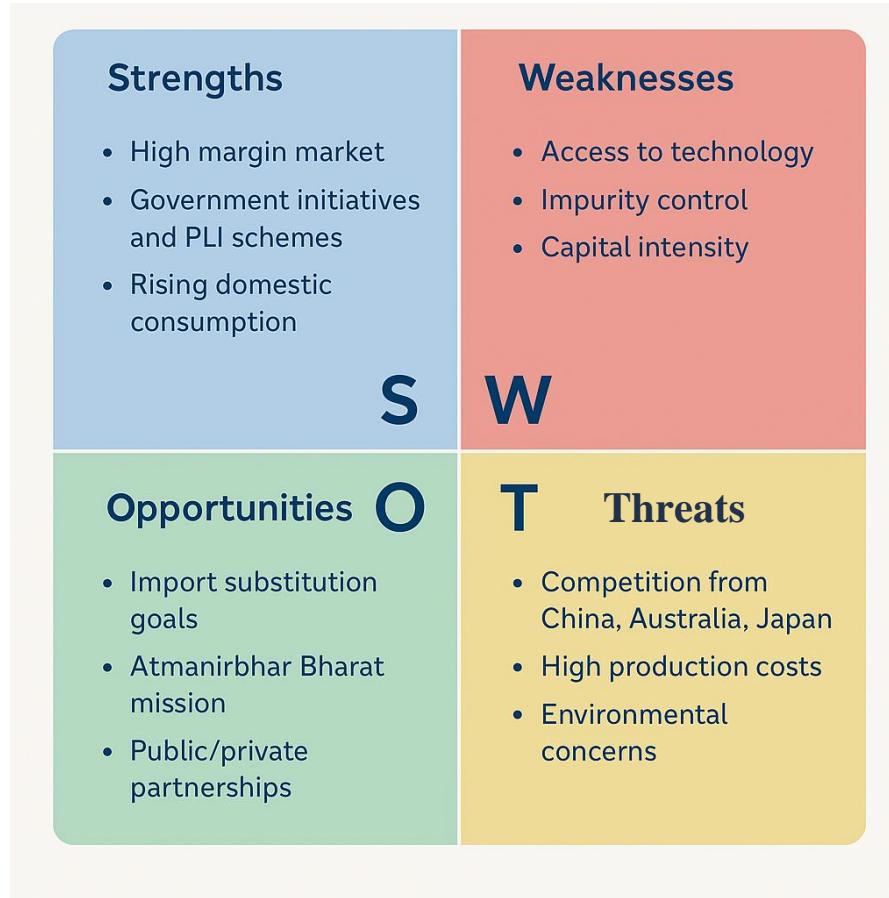

Hydrothermal / HCl Leaching Process for HPA Production



# Industrial Value Chain & Market Landscape


## Global 4N+ HPA Market Landscape

Emerging Demand & Market Projections




*The global market for High Purity Alumina was valued at US\$17.3 Billion in 2024 and is projected to reach US\$52.6 Billion by 2030, growing at a CAGR of 20.3% from 2024 to 2030.*

## HPA Value Chain



# Investment Opportunities & Challenges



# Key Players & Cost Benchmarks

# Global Market Dynamics: Players, Costs & Competitive Edge

## Major Global Players:

- Altech Chemicals (Australia)
- Sasol (South Africa)
- Sumitomo Chemicals (Japan)
- Orbite Technologies (Canada)

## Typical Production Routes:

- Hydrochloric Acid Leaching
- Alkoxide Process
- Thermal decomposition of Aluminium Salts

## Cost Benchmarking (for 4N HPA):

- Global Average Cost - \$ 14-20/Kg
- Indian R&D based Cost- ₹ 500-600/kg (approx. \$ 6-7 excluding manpower and scale-up factors)

# Work Done on HPA at JNARDDC- Project Overview

# Project Details

**Title:** Development of Process for 4N High Pure Alumina (HPA) and Substrate Making for its Validation in LED Applications

## OBJECTIVES



Develop a process know-how for 4N HPA preparation

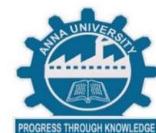


Preparation of sapphire



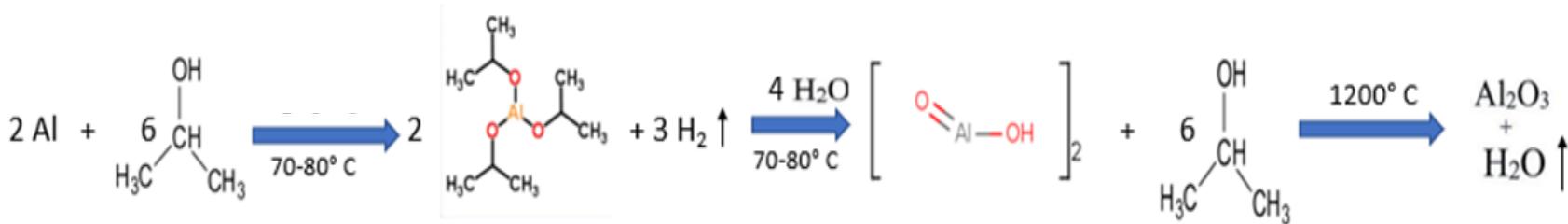
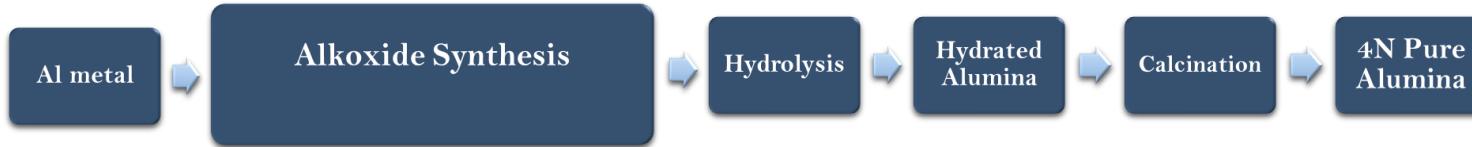
Validation of sapphire for LEDs




Cost Economics for developed process



JNARDDC, Nagpur


IIT Bhubaneswar



Anna University

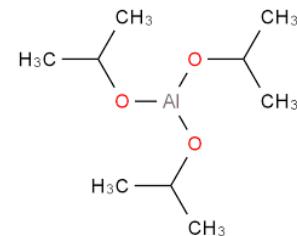
# Process Methodology – Alkoxide Route Using Aluminum Metal



## Advantages of Alkoxide Hydrolysis Method

Fast reaction speed,

High purity of the product,


Isopropyl Alcohol recycling,

And Reuse

# Precursor Advantage: Role of AIP in HPA Purity

- **Precursor Purity:** AIP can be synthesized with high purity and if used as a precursor, initial purity carries through to the final product i.e HPA.
- **Controlled Reaction Pathways:** Precise manipulation of reaction conditions
- **Reduced contaminant introduction:** With its well defined chemical structure, introduction of unwanted contaminants can be reduced
- **Fewer Purification steps:** Highly pure precursor reduce the need for extensive purification steps means less potential for contamination
- **Tailored Synthesis routes:** AIP provides flexibility in defining synthesis routes
- **Optimized Reaction Conditions:** Temperature and Pressure optimization leads to more efficient reaction with fewer unwanted products

The central Aluminium is octahedral surrounded by three bidentate  $(O-Pr)_4$  ligands, each featuring tetrahedral Al.



Unique chemical structure of AIP

# Catalyst-free Approach: Cleaner, Safer Pathway

## Why It Matters:

Traditional synthesis methods for HPA often rely on toxic catalysts like **iodine** and **mercury chloride**, posing safety, environmental, and regulatory challenges.

## Our Breakthrough:

JNARDDC's catalyst-free route eliminates hazardous chemicals while maintaining ultra-high purity.

- **Controlled temperature for precise reaction kinetics**
- **Regulated pressure to maintain reaction equilibrium**
- **Optimized reaction time for purity + efficiency**

## Advantages Over-Catalyst Based Methods

| Catalyst-Based (Iodine, HgCl <sub>2</sub> )       | Catalyst-Free (JNARDDC)    |
|---------------------------------------------------|----------------------------|
| Uses Toxic and hazardous substances               | Environmentally Benign     |
| Requires additional removal steps                 | Simplified Process         |
| Risk of catalyst contamination in final product   | Cleaner, higher purity     |
| Higher cost due to catalyst handling and disposal | Lower operational cost     |
| Regulatory challenges for toxic chemicals         | Safer, scalable, compliant |

# How Pure Are Our Raw Materials?

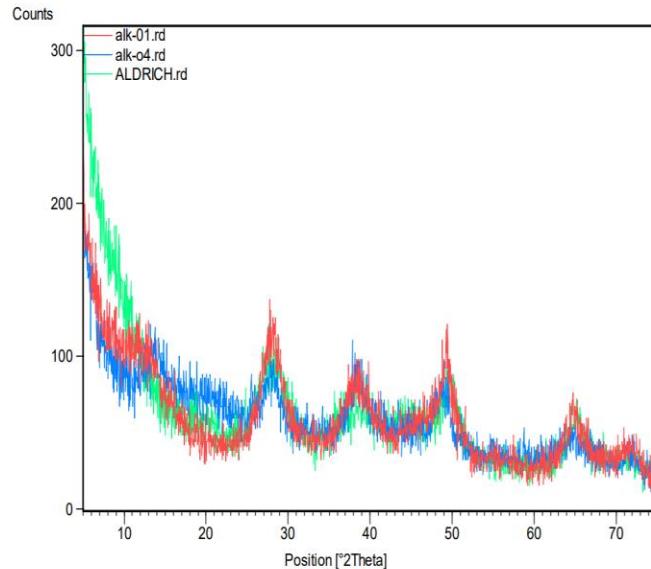
## Purity analysis of aluminium metal received from NALCO

| Elements | Iron (Fe)<br>Wt % | Silicon (Si)<br>Wt % | Copper (Cu)<br>Wt % | Manganese (Mn)<br>Wt % | Zinc (Zn)<br>Wt % | Vanadium (V)<br>Wt % | Gallium (Ga)<br>Wt % | Titanium (Ti)<br>Wt % | Magnesium Mg<br>Wt % | Chromium (Cr)<br>Wt % | Nickel (Ni)<br>wt % | Barium (B)<br>wt % | Calcium (Ca)<br>wt % | Sodium (Na)<br>wt % | Strontium (Sr)<br>wt % | Total Purity |
|----------|-------------------|----------------------|---------------------|------------------------|-------------------|----------------------|----------------------|-----------------------|----------------------|-----------------------|---------------------|--------------------|----------------------|---------------------|------------------------|--------------|
| NALCO    | 0.061             | 0.018                | 0.007               | 0.002                  | 0.003             | 0.003                | 0.007                | 0.004                 | 0.002                | 0.001                 | 0.004               | 0.001              | 0.001                | 0.006               | 0.001                  | 99.878%      |
| JNARDDC  | 0.040             | 0.025                | 0.0003              | 0.0007                 | 0.0018            | 0.0030               | 0.0075               | 0.005                 | 0.0007               | 0.0007                | 0.0008              | 0.0011             | 0.0002               | 0.005               | ND                     | 99.905%      |

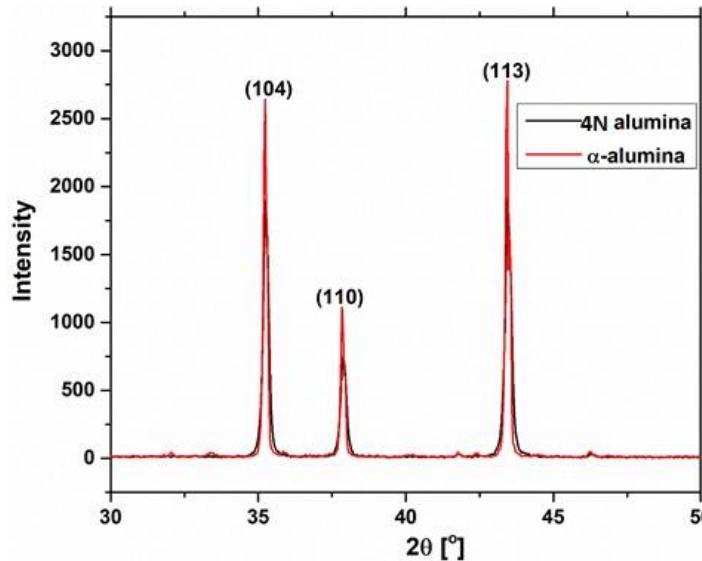
## Purity analysis of Iso Propyl Alcohol

| Water | Fe        | Ti | Ca        | V  | P         | Ga | Mg | Si |
|-------|-----------|----|-----------|----|-----------|----|----|----|
| 0.01% | 0.093 ppm | ND | 0.036 ppm | ND | 0.031 ppm | ND | ND | ND |

# Intermediate and Final Purity Milestones

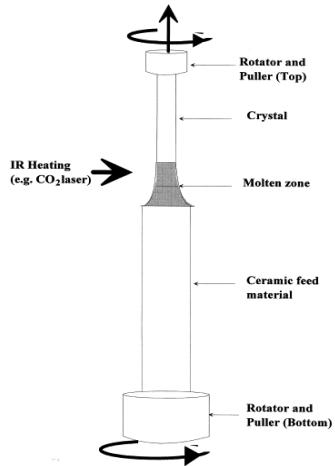

## ICP-Analysis of Intermediate Products

| Elements % | Fe <sub>2</sub> O <sub>3</sub> | SiO <sub>2</sub> | Cu <sub>2</sub> O <sub>3</sub> | Mn <sub>2</sub> O <sub>3</sub> | Mg <sub>2</sub> O <sub>3</sub> | Zn <sub>2</sub> O <sub>3</sub> | TiO <sub>2</sub> | V <sub>2</sub> O <sub>5</sub> | P <sub>2</sub> O <sub>5</sub> | CaO     | Purity   |
|------------|--------------------------------|------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|------------------|-------------------------------|-------------------------------|---------|----------|
| AIP        | 0.0404                         | 0.0246           | 0.00044                        | 0.00023                        | 0.00081                        | 0.00199                        | 0.0049           | 0.00030                       | 0.00119                       | 0.0076  | 99.9053  |
| Al Hydrate | 0.037                          | 0.0223           | 0.00023                        | 0.00021                        | 0.00092                        | 0.00174                        | 0.0051           | 0.00035                       | 0.00328                       | 0.00054 | 99.90921 |


## ICP-Analysis of final Product

| Sample ID                                    | SiO <sub>2</sub> (%) | TiO <sub>2</sub> (%) | Fe <sub>2</sub> O <sub>3</sub> (%) | CaO (%) | P <sub>2</sub> O <sub>5</sub> (%) | V <sub>2</sub> O <sub>5</sub> (%) | Al <sub>2</sub> O <sub>3</sub> (%) |
|----------------------------------------------|----------------------|----------------------|------------------------------------|---------|-----------------------------------|-----------------------------------|------------------------------------|
| ALK-52                                       | 0.0023               | 0.001                | 0.007                              | 0       | 0.0003                            | 0.0004                            | 99.989                             |
| Al <sub>2</sub> O <sub>3</sub> Sigma Aldrich | 0.0011               | 0.001                | 0.007                              | 0       | 0                                 | 0.0019                            | 99.989                             |

# Crystallographic Match: Synthesized vs Standard Materials




**Comparative diffractogram of prepared AIP  
with the one procured commercially**



**Comparative Diffractogram of prepared HPA  
with the commercially procured**

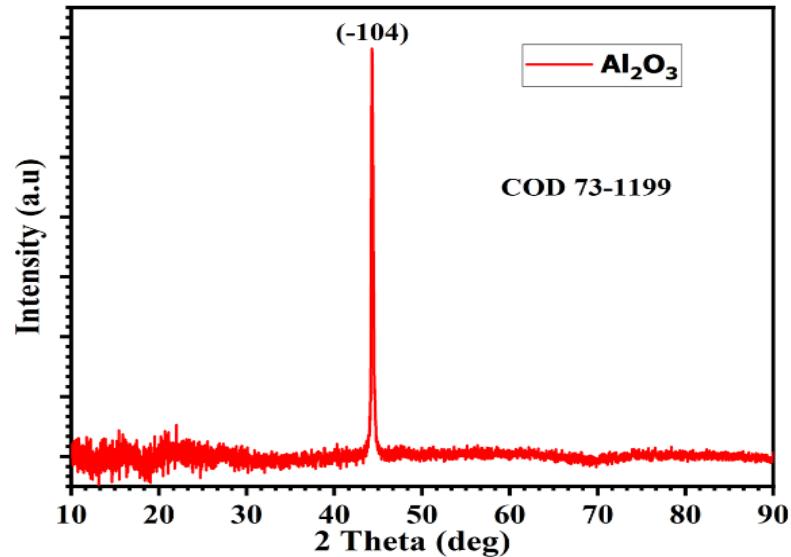
# From HPA to Sapphire



**Schematic of Float zone  
method**

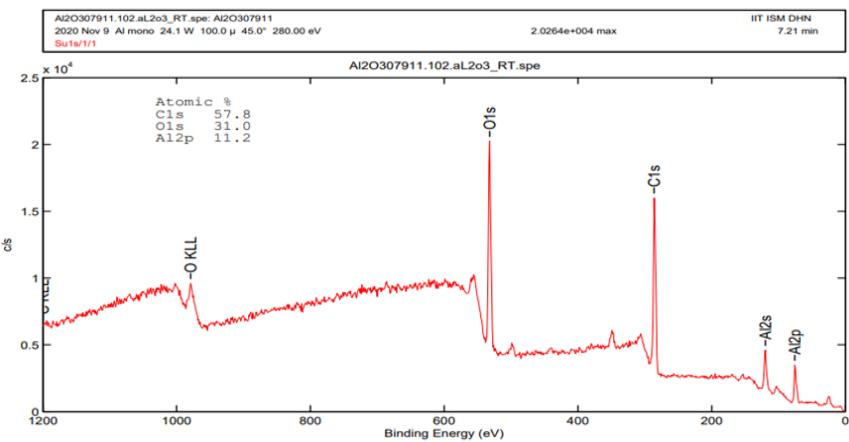


**Sapphire Growth facility  
installed at Anna University**

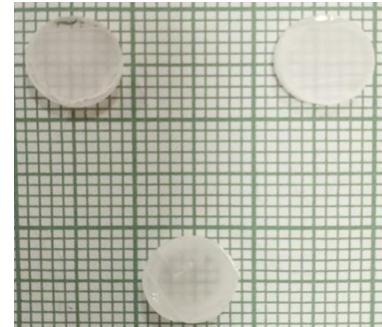
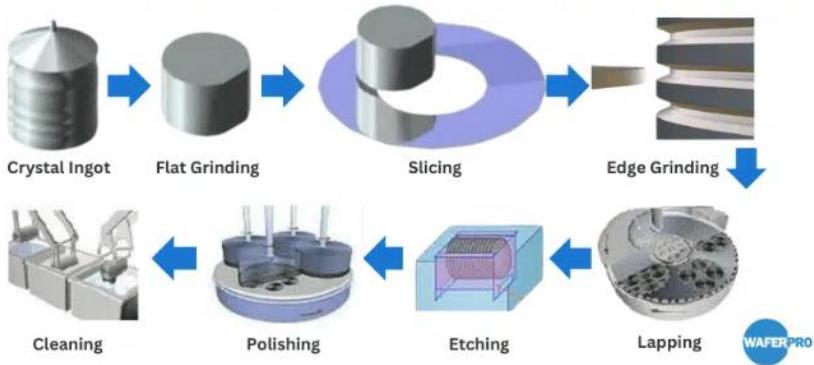



**Float Zone growing  
the crystal from melt**

**Single crystal  
grown (5 cm x 1cm)**




# Structural and Surface Purity of Sapphire

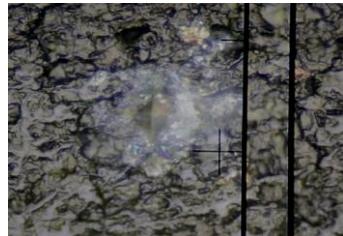




HRXRD

XPS

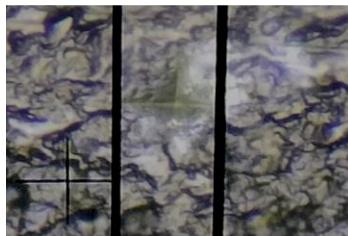


# Alumina Wafer Fabrication




Single crystal grown

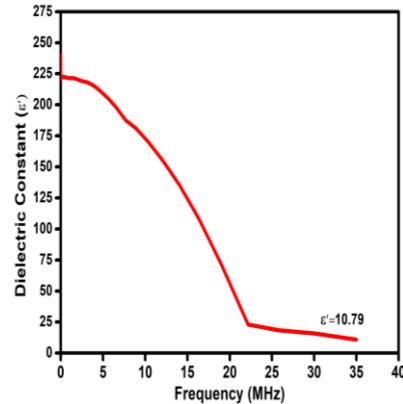
Wafer Manufacturing Process


$\text{Al}_2\text{O}_3$  wafers (Dia.10 mm and thickness 1.5 mm)

# Functional Characterization of Alumina Wafers



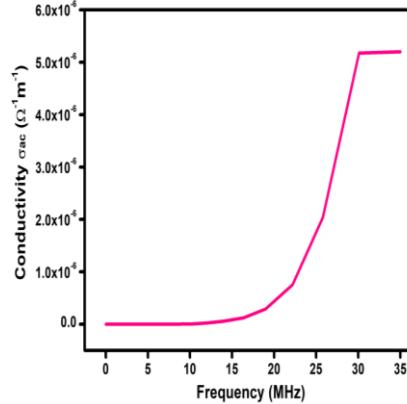
1 kgf


76.56 GPa



0.5 kgf

31.72 GPa


**Vicker's Hardness:** 
$$HV = \frac{2F \sin \frac{\alpha}{2}}{gd^2}$$



$$\epsilon_r = \frac{C_p d}{\epsilon_0 A}$$

$\epsilon_r = 9.5$  at 1 MHz

$C_p$  = Capacitance  
 $d$  = thickness of the sample  
 $A$  = area of the sample  
 $\epsilon_0$  = Absolute permittivity of free space ( $8.854 \times 10^{-12} \text{ C}^2 \text{N}^{-1} \text{m}^{-2}$ )



$$\sigma_{ac} = \epsilon_0 \epsilon_r \omega \tan \delta$$

$$\sigma_{ac} = 5.2 \times 10^{-7} \text{ } \Omega^{-1} \text{ m}^{-1}$$

$\epsilon_0$  = absolute permittivity  
 $\epsilon_r$  = Dielectric constant  
 $\omega = 2\pi f$   
 $\tan \delta$  = Dielectric loss

## Dielectric Properties

# Cost Advantage of Alkoxide Route

## Cost of 4N HPA Production – Global vs Alkoxide Route



## Cost-Efficient Pathway to 4N HPA via Alkoxide Route



# From Lab Success to Bench-Scale Reality

- Scale-up of Alkoxide Based HPA Process
- Design and Set up of Bench-Scale Reactor System
- Optimization of Process Parameters
- Material Characterization at Larger Scale
- Evaluation of End-Use Suitability
- Proposal for Funding and Industry Partnership

# Key Takeaways and The Road Ahead

- **4N High Purity Alumina is a strategic material**  
Critical for advanced applications like LEDs, semiconductors, and sapphire substrates
- **Growing global demand presents investment opportunities**  
Especially for India to emerge as a self-reliant supplier.

- **Lab-scale success at JNARDDC validates the potential**  
Alkoxide-based HPA process offers promise for scale-up
- **Next phase: Bench-scale production & industry partnerships**  
Aimed at commercialization, cost-efficiency, and application testing
- **Collaboration is key**  
Investors, industry partners, and R&D institutes can jointly unlock value

# Thank You!

*For your time and attention*

For Collaboration & Queries:

Dr Priyanka Nayar

Scientist

JNARDDC, Nagpur

Email: [pnayar@jnarddc.gov.in](mailto:pnayar@jnarddc.gov.in)



*Let's connect and innovate together.*