
IBAAS 2024
TECHNICAL LECTURE SERIES

Benoit Verreault
Maestria Solutions

Revolutionizing Smelter
Operations: Early
Detection of Anodic
Incidents with AI

Presenter
Presentation Notes
Good day everyone, and welcome to this Virtual Technical Conference organized by the International Bauxite, Alumina and Aluminium Society. I'm honored to be speaking with you all, today, and I'd like to start, by expressing my sincere appreciation to the IBAAS team for inviting me to share my insights on improving smelter operations with Artificial Intelligence.
I'm excited to share my knowledge with you, and I look forward to our discussion on how AI can enable early detection of anodic incidents, optimize performance, and reduce operational risks in smelter operations. Thank you again for joining me, and let's get started!
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Introduction
World aluminum production was estimated to be about 70 million tonnes of primary aluminum in 2023, which was a 2.25% increase from the previous year.
The aluminum production process begins with the electrolysis of alumina (aluminum oxide) dissolved in cryolite. To produce a high-quality product, the anodes used in this process must have a long life. 
Anode Materials and Lifespan
Carbon anodes are often used for this purpose due to their relatively long lifespan and low cost.  Alton Tabereaux, a distinguished figure in the aluminum sector known for his vast operational and technical knowledge, has consistently pointed out that the root cause of 80% of pot operation issues lies with anodes.  However, predicting their time to failure is not always easy. Several factors can affect their lifetime, including the operating voltage, current density, and temperature of the cell.
Challenges in Predicting Time to Failure
One limitation of predicting time to failure is that it can be difficult to account for all variables that may affect the outcome. Many factors are not always known or easily quantified. In some cases, only limited data is available about how certain variables might impact reliability. This makes it difficult to develop accurate models for predicting when something will fail. Additionally, there are often multiple ways for something to fail, and sometimes even small changes in design or manufacturing process can have a significant impact on reliability over time.
Predictive maintenance aims to minimize downtime and component costs by predicting machine failures. However, the implementation of such a failure prediction system poses several challenges. For instance, the time series data of the dataset may be recorded at irregular intervals due to product data and machine characteristics, which poses a challenge when using deep learning methods for failure prediction. Additionally, the quality of sensor data is often poor, incomplete, inconsistent, and unstandardized, making it difficult for manufacturers to derive meaningful insights4. The dimension of the prediction windows plays a crucial role, and the results highlight the effectiveness of deep learning approaches in classifying data with diverse time-dependent patterns preceding a failure.
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Predictive Maintenance in Aluminum Production
Predictive maintenance is a groundbreaking solution for large corporations managing an extensive portfolio of plants and machinery. This innovation not only offers real-time insights into the health of equipment but also fosters proactive maintenance strategies, leading to significant reductions in both downtime and operational costs. By leveraging sensor technology to monitor equipment performance, maintenance teams can pre-emptively identify and rectify minor issues before they escalate into major problems. This approach effectively minimizes unplanned downtime and reduces maintenance expenses, while simultaneously enhancing productivity, decreasing waste, and elevating profits.
Advanced Predictive Models
Recent advancements in predictive modeling, sensor technologies, and advanced data analysis methods have emerged as vital tools to address the challenges in aluminum production. Machine learning approaches, statistical models, and hybrid techniques are being utilized to predict anode behavior and improve operational efficiency in aluminum cell. For example, deep learning models such as long short-term memory networks (LSTM) and stacked denoising autoencoders have shown high accuracy in predicting anode effects, which are common failures in the aluminum industry.
Early Anomaly Detection
Early anomaly detection is a critical component of predictive maintenance in aluminum production. By identifying deviations from normal operating conditions, maintenance teams can address potential issues before they lead to equipment failure. This proactive approach involves the use of advanced sensor technologies and data analytics to monitor key parameters such as temperature, voltage, and current in real-time. Machine learning algorithms can analyze this data to detect patterns and anomalies that may indicate impending failures.
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The Weibull Distribution
The Weibull distribution is a continuous probability distribution widely used in reliability engineering to model failure times. It is particularly useful for modeling the lifetime of a product or system. The distribution support two parameters,  which determine the shape and scale of the distribution, respectively.
Neural Networks
Neural networks are a type of machine learning algorithm that can be used to model complex patterns in data. They are composed of neurons interconnected by synapses, with the strength of each connection represented by a weight. Neural networks can be used for tasks such as classification, regression, and prediction.
Recurrent Neural Networks
Recurrent neural networks (RNNs) are a type of artificial neural network designed to learn and remember information over time. RNNs can be used to model sequences of data, such as words in a sentence or numbers in a sequence. They are ideal for applications such as time series forecasting, natural language processing, and text classification.
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Loss Functions
A loss function is a mathematical tool used in statistics and machine learning to measure the distance between predicted and actual values. The mean squared error (MSE) is a commonly used loss function that measures the average squared difference between predicted and actual values. The negative log-likelihood loss function is another popular function used to measure the goodness of fit between a model and observed data.
Training, Development, and Test Data Sets
Training, development, and test data sets are essential components of machine learning. Training sets are used to train the model, development sets are used to tune the model, and test sets are used to evaluate the accuracy of the model. You will have more details later in this presentation.
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Early Stopping
Early stopping is a technique used in machine learning to prevent over-fitting of the model to the training data. It involves halting the learning process when the improvement in performance on the development set is stagnant .
Evaluation Metrics
Receiver Operating Characteristic Curves
A Receiver Operating Characteristic (ROC) curve is a graphical plot that illustrates the performance of a binary classifier system as its discrimination threshold is changing.
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Dataset and Data Processing
Some details on the Dataset of Smelter A
The dataset used for Smelter A in this study, consists of anode millivolt readings collected from 90 pots, each comprising 40 anodes, over a duration of 5 months. These readings were taken daily, resulting in a resolution of one day. Each entry describes an anode in terms of the average mV, maximum mV, and range - hereafter referred to as noise - of the observed mV values.
Data Collection and Preprocessing
Each anode was routinely examined to detect signs of degradation. The observed anomalies were recorded by cataloging the date and time of the incident, the position index of the implicated anode, and the type of the incident. In this work, we investigate the prediction of one class of incidents, which involves the observation of washed pins (PW). In total, 140 such incidents are recorded in our dataset. Each incident is represented using the measurements recorded since the last anode change preceding the incident. This resulted in a total of 1476 data-points.
Some Exploration Observation on our Data Analysis
An exploration of the dataset revealed a strong correlation between mV values of anodes in close proximity. This is especially salient in the case of twin anodes. By contrast, no evidence of colinearity was discovered in the noise measurement of twin anodes. This was established by examining both the Pearson correlation and the variance inflation factor (VIF) of these measurements.
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Main Features of mVa mV Measuring Forks from Maestria use for the measurement campaign by Smelter A and Smelter B
The mVa mV measuring forks from Maestria are designed to be ultra-lightweight and ergonomic, making them easy for operators to handle. They are very quick to acquire measurements, typically taking 30 seconds to one minute to scan a full cell. The forks come with a long-lasting battery and a pre-programmed measurement sequence, ensuring efficient operation. The measuring forks are also super accurate, quite important to make the data AI processing work well.
These forks provide time-stamped mV data and support full potline and anode configuration. They offer sound and visual validation of the quality of the mV reading. Additionally, the built-in memory stores mV data for transfer at the end of the run. The forks are equipped with a built-in display, joystick, and LED for ease of use. Built-in Bluetooth and Wi-Fi are available to push the measurement quickly on a PC or a network for quick processing.
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Data Sampling and Representation
To represent non-incidents, we sampled 21,542 data-points that describe anodes not observed to be involved in any incident. The 140 Pin Washed incidents present in our dataset were represented as separate time series describing the behavior of the implicated anode at each time step.
Feature Engineering
The following features were constructed (or used directly from the dataset) to describe each data-point:
Average mV
Maximum mV
Noise
Expanding window calculations:
Standard deviation of average mV, maximum mV, and noise.
Mean of average mV, maximum mV, and noise.
Exponential moving average of average mV, maximum mV, and noise.
Moving range of average mV, maximum mV, and noise.
Each of the above features was also calculated for the twin anode and included in the representation of the data-point. Additional features include Anode Age and Pot Age. In total, 32 features are computed at each time step.
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Results and Discussion
Overview of Results
In this section, we present the results of our model trained to predict pin wash incidents for Smelter A and some others incidents for Smelter B. We evaluate the model's performance using various metrics, including the Receiver Operating Characteristic (ROC) curve, and conduct an analysis of each metric as a function of the observed time to failure. Additionally, we examine the relationship between model performance and the length of test samples.
The work we are presenting enable the early detection of various types of incidents and problems, providing operational personnel with the information needed to address anodic issues proactively. When these AI tools are implemented in regular operations, outside of crisis situations, they enhance responsiveness to upcoming incidents, allowing for faster detection and resolution.
 
We have not only focused on 'Pin Wash' but also addressed several types of anodic incidents such as ‘Spikes' and 'Fallen Block,' which impact metal quality and maintenance costs. We will demonstrate our capability to predict these incidents effectively. This predictive ability offers benefits in standard operations and becomes even more significant during crises, which can sporadically occur in smelters. These crises can result in costs ranging from several hundred thousand to millions of dollars, and sometimes tens of millions if a complete 'potline' shutdown occurs.
 
Given the financial implications, it is crucial to implement strategies to minimize these negative effects and potentially avoid certain crises, even if it requires additional efforts and costs. These investments will be recovered through improved stability and operational performance. Often, the origin of crises is linked to deviations in the electrolysis process or issues with anode quality from the carbon side. Regardless of the fundamental cause, addressing these issues can help minimize the consequences.
 
Crises often have snowball effects, leading to escalating costs. AI can help detect these issues in advance and address them more quickly. Our goal is to detect anomalies or incidents early enough to minimize negative effects and reduce the total cost of production losses or correction costs for each detected phenomenon.
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The models used make it possible to predict the time until the next
incident occur (“Expected time to failure”), as well as the
corresponding confidence interval.

These predictions can be made over a time anticipation window of 1
to 5 days
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How do these tools work? Let's take a look at their principles. First, the concept of the time window is important. Our targeted models aim to make predictions within a time window of 1 to 5 days. These are the objectives we wish to achieve, although initially we cannot guarantee success. Typically, we want to know today what incidents will appear in one, two, three, or up to five days. In the results you will see later in this presentation, we will mainly show results for two and five days.
The model provides a probability of the occurrence of incidents over time, as displayed in the animation you are currently seeing. The blue stars represent the actual times when problems appear, and the oscillating curve shows the probability of the problem appearing, varying over the time window. As we get closer to a real incident, the probability of detection should increase, at least which is our goal.
Our main priority is to develop an AI-based mechanism to detect potential incidents within a specified time frame, facilitating the early recognition of evolving anomalies.
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• The development of the “Deep Learning” predictive model was 
done in an iterative manner
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Let’s take a look at the various steps our team of experts used. The main approach involved predictive models of the 'deep learning' type, which learn from injected data sets. We provided an initial data set of 5 months from a series of cells at a smelter using AP technology, referred to as ‘Smelter A’. This data set primarily included observations of ‘Pin Wash’ incidents, serving as the basis for developing the model's initial functions.
In the first proof of concept phase, we limited the scope of early detection to avoid the common pitfall of trying to cover too broad a range of incidents, which often leads to suboptimal performance in AI projects. Using this more restricted data and standard deep learning tools, we developed the initial model. Early results were mixed, likely due to the limited data available during the study period, which affected the model's ability to learn effectively.
To address this, we balanced the data by ensuring an equal presence of incident and non-incident periods, facilitating better learning for the model. This data processing step, along with other optimization techniques, improved the model's efficiency based on data from 'Smelter A'. However, it was still not sufficient for practical use.
We then launched a second analysis campaign with another smelter, referred to as ‘Smelter B’, also using AP technology. Unfortunately, 'Smelter B' had limited data on 'Pin Wash' incidents. Nevertheless, we identified other types of incidents and applied machine learning techniques to this new variation of incidents. The results from 'Smelter B' will be explained further in this presentation.
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Source: https ://en.wikipedia .org/wiki/Precis ion_and_reca ll
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Recall = The proportion of actual positive instances that are correctly identified by a model. In 
other words, it measures how well a model detects all the actual positive cases.
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Here is some details of the process followed by our team and the actual results, which will be presented a little later. Let's take a few moments to understand some key concepts for evaluating model performance. We will consider 'Model Performance Indicators,' which are tools for determining the effectiveness of AI models applied to data. This will help us assess the relevance of effective detection when applying machine learning processing, allowing us to better understand the quality of our work and the accuracy of our predictions.
Look at this slide and focus on the blue square on the left side. When we are in the blue zone, it means there is a real incident. Conversely, when we are in the purple zone, it means there is no incident. When we are in the blue circle (blue half-moon), it means the model correctly predicted an incident, which we call a 'True Positive.' This is crucial because it is our ultimate objective. For example, knowing that real 'spikes' are coming is valuable information and should be in the 'True Positive' zone.
Another important concept is 'False Positives,' where the model predicts an incident, but in reality, there is none. This false detection creates unnecessary work for the operations teams, which is why we aim to minimize false positives. 'True Negatives' occur when there is no incident, and the model correctly predicts this, resulting in no surprise and no action needed. 'False Negatives' happen when the model predicts no incident, but there is one. Minimizing false negatives is essential because failing to detect real incidents weakens our model.
We also calculate two important indicators to evaluate model effectiveness: 'Recall' and 'Precision.' Recall is calculated by dividing true positives by the sum of true positives and false negatives (the entire blue section). This indicator measures the number of real problems the system can detect using AI techniques. The higher the recall, the better the model is at detecting real incidents. Precision is calculated by dividing true positives by the sum of true positives and false positives. A higher precision indicates fewer false positives, which is crucial for operations. Maximizing both recall and precision is essential for understanding the importance of these indicators to get efficient results.


https://en.wikipedia.org/wiki/Precision_and_recall
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Let’s take a concrete example to demonstrate the importance of these indicators. In this case, we have nine real incidents in total (blue area). The model predicts eight 'True Positives,' which are real incidents, and misses one, resulting in a 'False Negative.' This prediction rate is very good. There are also two 'False Positives,' which are not real incidents.
We set sub-objectives for our team, aiming to detect at least 80% of incidents and keep false incidents below 20%. These targets were part of the concept for creating a first prototype. Smelter A and Smelter B were not involved in iterative model improvements; we only had static datasets. We hypothesized that improvements would be possible with active participation from smelter personnel, particularly for rigorous incident identification, as human factors can significantly impact machine learning algorithms.
The next step involves active collaboration with a smelter, targeting cooperation objectives to work in real conditions. This will help determine if further reducing the level of false positives is necessary to achieve greater accuracy, making the tool more acceptable to operational personnel.



https://en.wikipedia.org/wiki/Precision_and_recall
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Initially, the detection core of the model was improved (optimization of the
concordance index) on the “pin wash” of Smelter A, then the studies (optimization
of the precision / recall couple) were carried out on the Smelter 2 data.

Actual data has been shared to allow:
A data set allowing the model to be developed
A data set allowing the model to be validated
A data set allowing the performance of the model to be evaluated

NB:
The results are sensitive to the anticipation time window which must be consistent
with the frequency of mV measurements
Note that the model is only based on the mV data provided by Maestria solutions
and may be enriched by the integration of others cell/anode data.
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Let's take a look deeper at the results. The first phase of work focused on 'pin wash' incidents using data from 'Smelter A'. This initial effort was followed by a campaign over a few months with 'Smelter A', and later, we applied the methodology to another data campaign with 'Smelter B'.
For 'Smelter A', we started with a dataset called 'Train' to apply machine learning for the learning phase. In a standard machine learning approach, we used a second dataset called 'DEV' to validate the model developed with the first dataset, measure performance, and make necessary adjustments. In the third phase, we tested the model on a new dataset not used in the development work to evaluate its performance. The results we will show you come from this evaluation phase, typically called 'Test'.
The main data for early detection were the measurements of anodic drops in millivolts (mV) for each anode, usually taken every 24 hours by the two smelters. To be usable, these measurements must be taken with precise and reliable equipment. Both 'Smelter A' and 'Smelter B' used mVa equipment from Maestria Solutions, supplied by our company. It's important to note that mV measurements are taken every 24 hours and are impacted by anode changes, anode beam movements, and other cell operations. This complicates processing because the machine learning model must distinguish between normal process fluctuations and abnormal fluctuations indicating anomalies.
Another interesting point is that the model is quite efficient but currently only uses data from the Maestria anodic drop measurements, anode change times, and anode beam raisings. It does not yet use other cell data. Including additional operational data could significantly enhance learning if done properly. In the future, if a similar approach is taken with a new smelter, adding various additional data from the cells, in addition to the mV measurements, would logically increase the reliability and quality of the models, leading to better performance.
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Let's examine now, the case of 'pin wash' for 'Smelter A'. We are focusing on optimizing the recall/precision couple to achieve high-quality detection. At left, when precision is 100%, recall is very low, indicating low reliability and inefficiency in detection. To improve model performance, the purple area needs to be larger, allowing for higher recall/precision values. Currently, our 'ML' model is not very efficient at this stage.
On the right, you can see the correspondence between the actual defect appearance times (in orange) and the predicted times (in blue). In the 'Train', 'Dev', and 'Test' graphs, the agreement between the initial data and the detection results in blue is not very good. This reflects the situation in our first iteration of developing an 'ML' model.
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Then we balanced the data for Pin Wash
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Next, again for the Pin Wash incident,we worked on balancing the data, ensuring an equal presence of incidents and non-incidents to improve the performance of the ML algorithms. This approach, commonly used in detection tasks, already shows a considerable impact on the recall/precision metrics, significantly enhancing detection efficiency. However, we continue to try to refine the algorithms to further improve machine learning performance.
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Then we improved the internal functions and optimized the “cost” functions for Pin 
Wash to help on the next step
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In this view in a last stage of adjustment of the model for Pin wash, you see the final phase of the work done on Smelter A, showing the best results for 'PIN WASH' type incidents. Take a few seconds to look at the 'Test' graph on the low right, who demonstrates a better correspondence between the predicted and actual times of incidents. However, we continue to refine the algorithms to improve machine learning performance. This was a significant step forward for the 'Pin Wash' dataset, but the recall/precision metrics are still not optimal for practical use by operations personnel.
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Total number of incident actually occurred on the floor 

Number of incidents predicted correctly 2 days before (TP) 

Number of false positive prediction (FP)

14

13

3

Incident type

Days window

SPIS (Spike)

2 days

1 13

13 3
TP FP

TNFN

Precision

Recall

(True Positives  /  Total 
Positives)

(True Positives  /  Total Real 
Incidents)

=

=

=

=

13 / 16

13 / 14

=

=

81 %

93 %
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Next, we moved on to the campaign with 'Smelter B' to detect new types of incidents, starting with 'Spike' detection. We overhauled our ML processing compared to what was done for 'Smelter A' to improve performance. This improvement is evident in the more interesting results shown in the graph. The model has clearly improved and meaningful.
The recall/precision values are now more promising, with a precision of almost 81% and a recall of 93%. This indicates that we have developed relatively efficient tools from an ML model perspective, making them good candidates for operations teams to prevent 'Spike' incidents well in advance. During this period, there were 14 real incidents. The model correctly predicted 13 of them and generated three false detections.
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Total number of incident actually occurred on the floor 

Number of incidents predicted correctly 2 days before (TP) 

Number of false positive prediction (FP)

35

32

8

Incident type

Days window

SPIS (Spike)

5 days

Precision

Recall

(True Positives  /  Total 
Positives)

(True Positives  /  Total Real 
Incidents)

=

=

3 32

32 8
TP FP

TNFN

= 32 / 40 = 80 %

= 32 / 35 = 91 %
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Additionally, in our continuous effort, we have results for predicting 'Spike' incidents five days in advance. For this five-day detection, we used the same data as for the two-day estimates, with some additional adjustments in the ML work. Out of 35 incidents, 32 were detected, 3 were missed, and there were 8 false detections. The precision/recall graph on the right shows very promising performance, indicating extremely encouraging results. Precision is 80%, recall is 91%.
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Precision

Recall

(True Positives  /  Total 
Positives)

(True Positives  /  Total Real 
Incidents)

=

=

Total number of incident actually occurred on the floor 

Number of incidents predicted correctly 2 days before (TP) 

Number of false positive prediction (FP)

8

8

0

Incident type

Days window

FBLU (Fallen Block)

2 days

0 10

8 0
TP FP

TNFN

= 8 / 8 = 100 %

= 8 / 8 = 100 %
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We have also done some work with other types of incident: 'Fallen Block' incidents and two days in advance. The precision/recall graph on the right shows very promising performance, indicating extremely encouraging results too.
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In search of early detection of incidents by accurately predicting the timing of their 
occurrence
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The way forward: Expanding the Dataset and Exploring New Failure Categories


The next steps in our research will include training our models with new and larger datasets, as well as exploring the application of our approach to different failure categories. By doing so, we aim to further evaluate the performance and generalizability of our method. Additionally, we plan to investigate the use of transfer learning to adapt our models to new failure categories, reducing the need for large amounts of labeled data.
Feature Engineering and Selection
We also plan to explore the addition of new features that can potentially improve the model's performance. performance. Two specific features that we plan to investigate are:
        CUSUM (Cumulative Sum): a statistical technique used to detect changes in the mean of a process.
        Nelson Rules: a set of rules used to detect anomalies in control charts.
Furthermore, we plan to conduct a thorough feature selection analysis to identify the most relevant features for predicting anode failures. This will enable us to reduce the dimensionality of our dataset and improve the interpretability of our results.
Addressing Limitations and Challenges
With no surprise, our approach has been demonstrated to be less effective when applied to shorter time-series, such as in the case when an anode has recently been changed or a large number of time-steps are missing from the series. To address this limitation, we plan to investigate the use of feature engineering methods to characterize short-term failures.
 
Human-Machine Interface and Decision Support
Finally, we need to investigate the best options to present the information to operators. One option could be to display the current True Positive Rate and False Positive Rate for each anode, or to present the historic value of these metrics for each anode. We also plan to explore the use of visualization tools, such as dashboards and heatmaps, to facilitate the interpretation of our results and support decision-making.
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Our future work can focus on improving the model's
performance by incorporating additional features, such as the
anode's maintenance history, or by using more advanced
machine learning techniques, such as transfer learning or
ensemble methods. Additionally, the model can be applied to
predict other types of incidents in the aluminum smelting
process.
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Future work can focus on improving the model's performance by incorporating additional features, such as the anode's maintenance history, or by using more advanced machine learning techniques, such as transfer learning or ensemble methods. Additionally, the model can be applied to predict other types of incidents in the aluminum smelting process.
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Predictive maintenance and early anomaly detection will
transform the aluminum production industry by enhancing
operational efficiency, reducing downtime, and minimizing
maintenance costs. Aluminum producers can proactively
address potential issues and optimize their production
processes by leveraging advanced sensor technologies and
machine learning algorithms.

It will be essential to use these tools in the future and the sooner
we do it, the more efficient and profitable we can be...

If you are interested by those results you can contact me for
further information...
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Predictive maintenance and early anomaly detection will transform the aluminum production industry by enhancing operational efficiency, reducing downtime, and minimizing maintenance costs. Aluminum producers can proactively address potential issues and optimize their production processes by leveraging advanced sensor technologies and machine learning algorithms.
 
It will be essential to use these tools in the future and the sooner we do it, the more efficient and profitable we can be...
If you are interested by those results you can contact me for further information.
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Thank you for your attention, and I hope you found this presentation 
informative and insightful. I'd like to express my gratitude to the 

International Bauxite, Alumina and Aluminium Society for inviting me to 
share my expertise with you. It's been a pleasure connecting with all of 
you, and I look forward to continuing the conversation on how Artificial 

Intelligence can revolutionize smelter operations.
As we conclude today's session, I'd also like to take a moment to wish 
you all a wonderful holiday season and a happy, prosperous New Year! 
May 2025 bring you joy, success, and continued growth for you. Thank 

you again, and I wish you all a great day!

mailto:benoit.verreault@maestria.ca
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