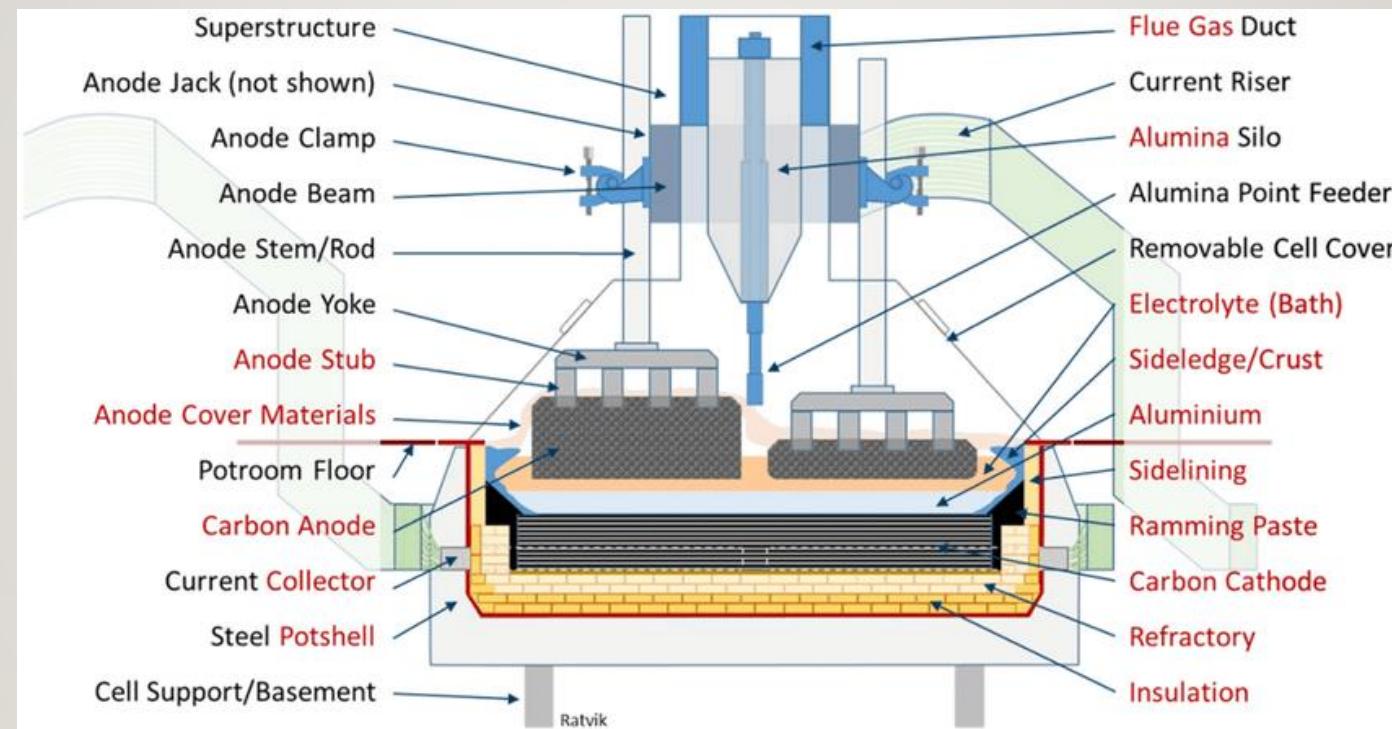


MODERN TRENDS IN POT PREHEATING AND START-UP OF HIGH AMPERAGE CELLS- KEY INSIGHTS FROM INDUSTRY EXPERIENCE

PRESENTED BY---- B.K.KAKKAR


WHY HIGH AMPERAGE POTLINE ?

- High amperage pots are the cornerstone of modern aluminium smelters and are always preferred due to economic and operational advantage
- Higher productivity
- Reduced energy cost per ton
- Lower capital investment per ton of metal
- Faster return on investment
- improved process stability and better performance
- These are a few driving forces behind building a higher amperage potlines
- Modifications in anode design, lining improvements, magnetic compensation, and control strategies in EGA's DX Plus and DX Ultra Plus technologies result in highly stable and promising pot performance and fits the description mentioned above

CROSS SECTION VIEW OF PREBAKED POT

INTRODUCTION

Pot preheat (resistor preheat)

- The objective of preheat
- Pot preparation for preheat
- Raw materials
- Energising/Cut in the pot
- Duration of preheat
- Monitoring Cathode temperature
- Optimum preheat rate
- Risk involved during preheat

Pot start up/Bath up

- Bath-up Preparation
- Bath pouring
- Post Bath up operations
- Super high amperage cells (info)
- **Dry Start up (info)**

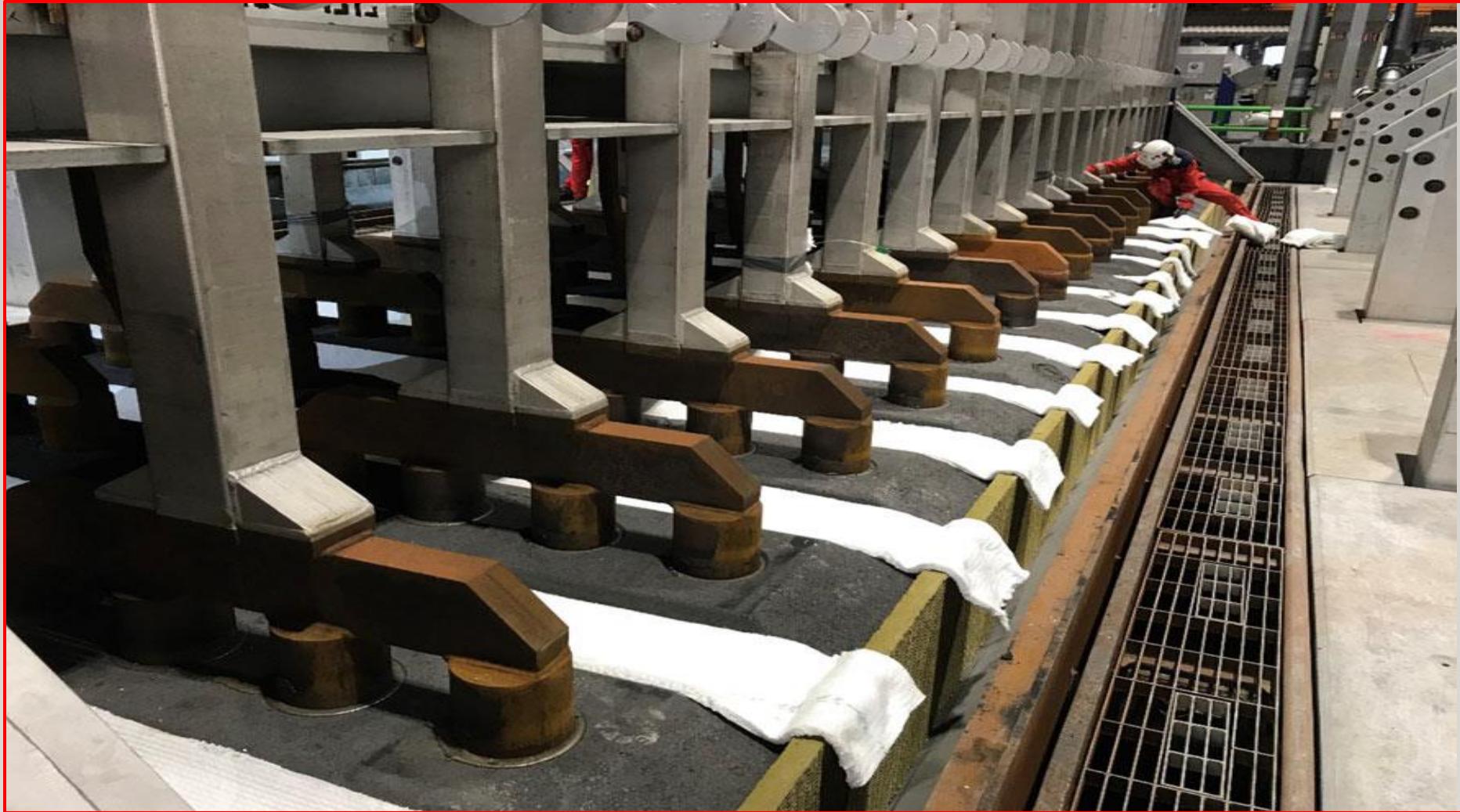
WHY DO WE PREHEAT THE POT

- Uniform heating of the cathode
- Elimination or reduced duration of start up anode effect
- To bring cathode block temperature to ≥ 900 °C
- Quick stabilization of pot after bath up at low voltage
- Reduction of the risk of bath and metal infiltration
- Elimination of cathode air burn (Hot spots)
- Protection of the lining

POT PREPARATION FOR PREHEAT

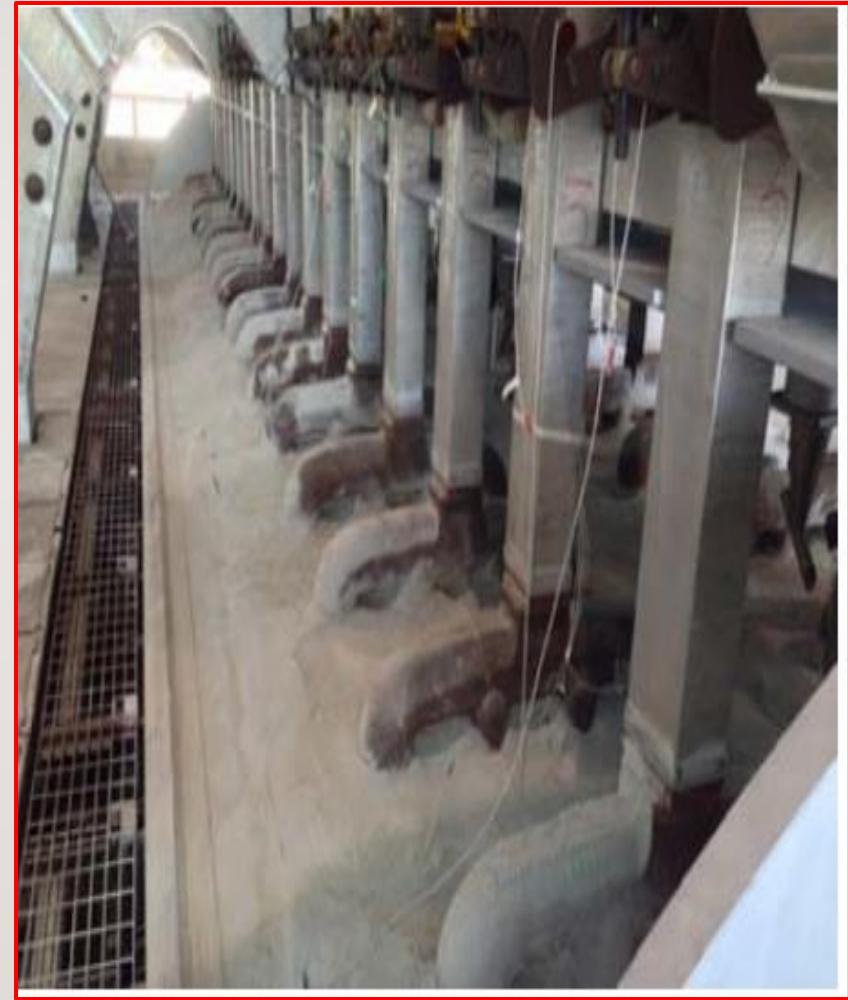
- After thorough pot inspection (Comprehensive check list), Then the preparation work is started.
- Clean the cathode surface with commercial vacuum cleaner
- Using the anode template, spread the graphite or resistor coke on the cathode
- Fix the anodes in the pot using PTM
- Anode covering with thermal insulation
- Fixing the preheat flexibles
- Side/end walls loading with pure crushed bath and soda (Sandwich cover) /specifications of crushed bath
- Installation of start up fuse
- Preheat monitoring (Most critical)

TAPPED BATH AND RESISTOR COKE ANALYSIS


Characrestic	Unit	Limit
Al ₂ O ₃	Wt%	≤8
C	Wt%	≤0.3
Fe ₂ O ₃	Wt%	≤0.1
Sio ₂	Wt%	≤0.15
P ₂ O ₅	Wt%	≤0.018
AlF ₃	Wt%	≤ 12
CaF ₂	Wt%	≤6.0
MgF ₂	Wt%	≤0.5
LiF	Wt%	≤1.0
Na ₃ Alf ₆	Wt%	≥75

Characteristic	Unit	Limits
Fixed Carbon	Wt. %	≥ 97-98
Ash Content	Wt.%	≤ 2.0-2.02
Real density	Gms/cm ³	2.10 Min
Electrical Resistivity at Pressure 0.015 Mpa and at room temperature	µΩm	2000

POT PREPARATION


Spreading the resistor coke

Anodes are fixed by crane and gap between anodes are covered with insulation blanket– It's a different technology pot

Anode stub marked with chalk to facilitate top covering

Anode top is covered with ACM

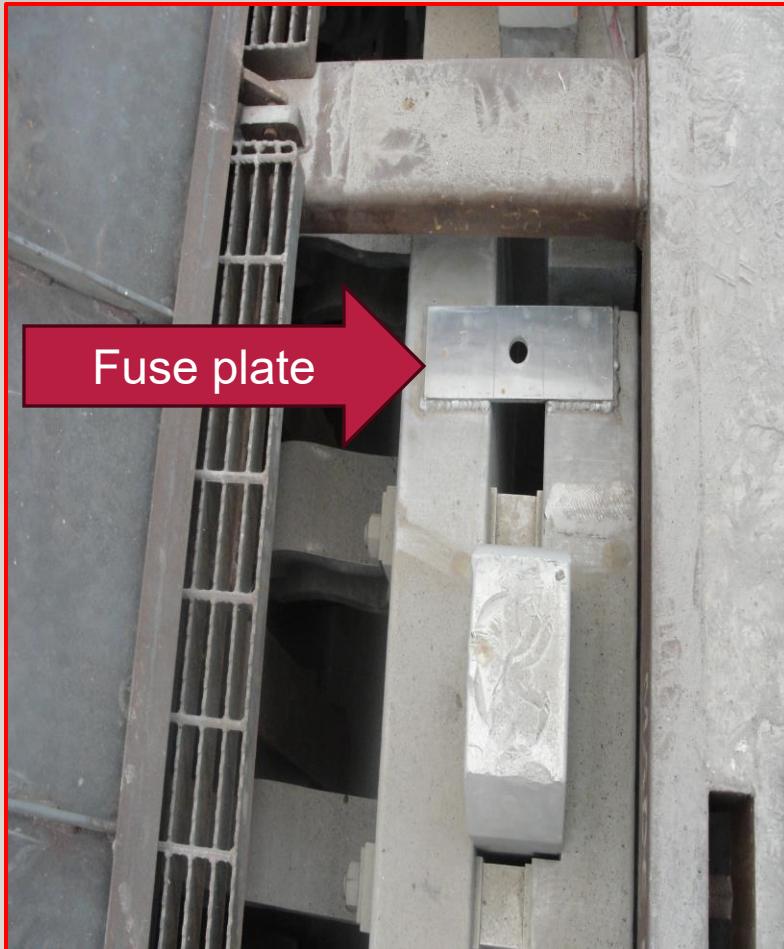
Graphite bed under anode shadow of high amperage pot

Anodes are well covered with crushed bath to avoid the heat losses

ACHIEVE HIGH AND UNIFORM CATHODE TEMPERATURE “AIR TIGHT” CAVITY PREPARATION

Different technologies use different height of anode top covering before preheat. In this picture anodes are fully covered.

POT PREPARATION CONTINUE....


Flexibles are being installed

Flexibles installed

Side wall loading completed
Crushed bath-soda-crushed bath

Fixing start up fuse

Start-up fuses general view

Hooded Pot, ready for preheat

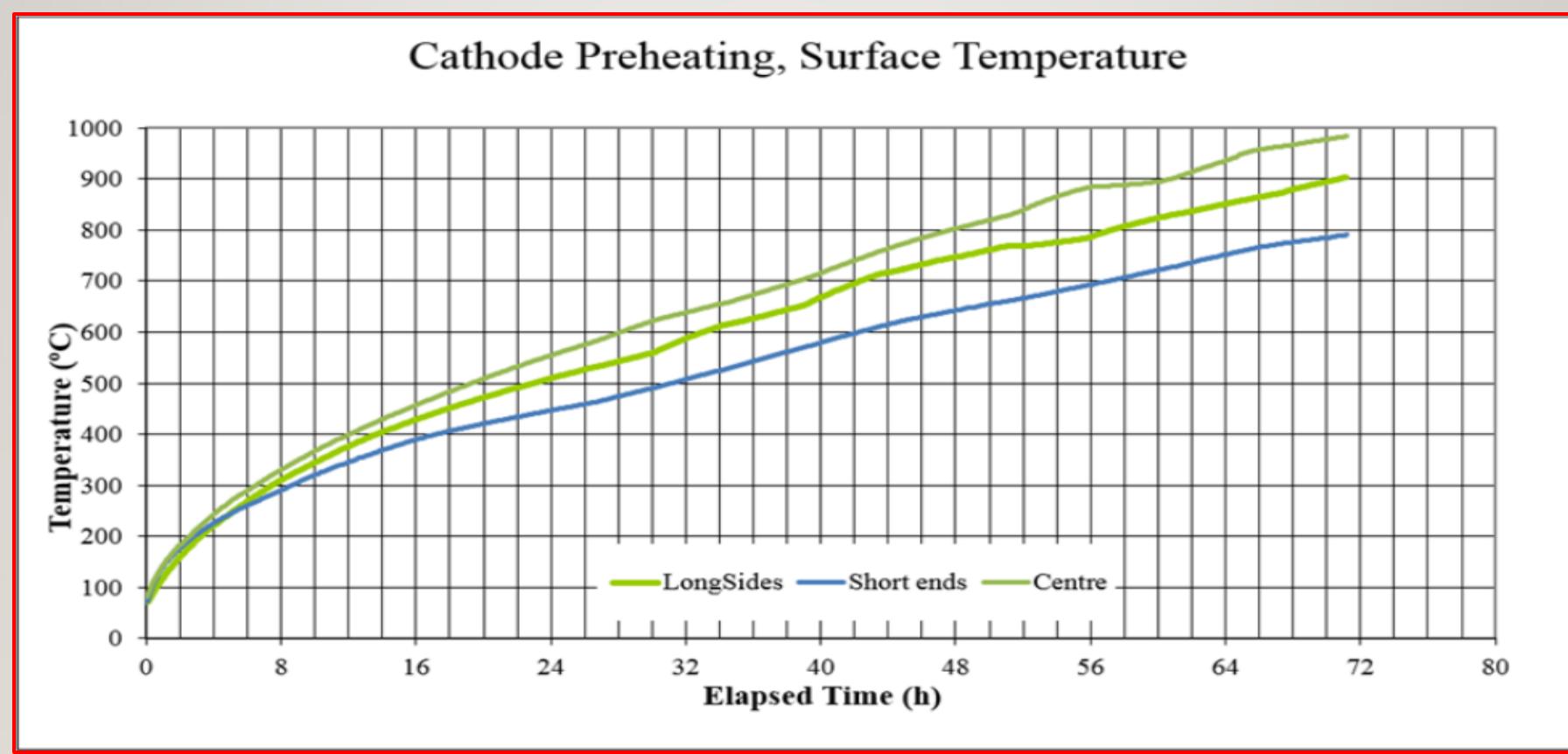
Short circuit wedge puller in place

HI FORCE WEDGE PULLER

Hi force jack device which was used initially

This device was developed by EGA, it's compact, highly safe and easy to operate

CUT IN/ENERGISING THE POT


- Prior to cut in the pot, ensure, duct damper is on closed position (re verify)
- Using the wedge puller device, all the short circuit wedges are removed one by one but not in proper sequential order
- The pot is cut in at full load and with utmost care.

MONITORING THE PREHEAT

- The objective is to have good current distribution in anodes and acceptable voltage drop between rod and flexibles
- Anode current distribution. These days, some vendors provide the device whereby you can monitor current distribution in real time any time without operator measuring it.
- Contact voltage drop
- Cathode surface temperature (Thermocouples are installed under the breakers)

HIGHER AND UNIFORM TEMPERATURE

Abnormalities during preheat

- Uneven current distribution
- Hot spots below some anodes, temperature might reach 1100°C causing oxidation of cathode
- Insufficient preheat temperature
- Red stubs or red pins
- Anode burn off- This is a typical case of poor anode sealing/poor quality of anodes
- High or low rate of heating.
- For graphitised preheat average rate of preheat of 15 °C is considered to be good
- Short side temperature not picking up properly as higher amperage pots are designed to dissipate heat

These challenges require advanced preheating strategies, such as computational fluid dynamics (CFD) for heat distribution, automated control systems, and robust safety protocols.

COMMON PROBLEMS DURING PREHEAT AND BATH UP

Red stub during preheat

Transition joint air cooling

POT START UP-POT BATH UP

➤ POT BATH UP STAGES

- Bath up preparation
- Pot Bath up
- Post bath up operation

➤ BEFORE BATHING UP THE POT

- Tighten the anode clamps
- Anode marking reference with chalk line
- Remove the flexibles
- Remove thermal insulation blanket

ANODE CLAMPING AND FLEXIBLES REMOVAL

POT START UP-POT BATH UP

BATH POURING STEPS

- Predetermined quantity (13-14 ton) of liquid bath is poured in controlled manner
- Ideal temperature of the bath should be above 970-980°C
- Raise the anode beam while maintaining all anodes immersed in molten bath
- Maintain about 45-48cm bath height depending upon cathode cavity volume available
- Add 15-20 dumps of alumina to liquid bath in pot(this depends upon technology to technology)
- Pot voltage is maintained around 10V
- In some technology, 3-4 anodes (predetermined) are raised about a cm after bath up
- Gas duct damper is opened completely

BATH TAPPING IN PROGRESS

BATH POURING USING START UP FILTER

Start-up Control Sheet

POST BATH UP ACTIVITIES

- After start up tilter is removed, carbon dust skimming
- Soda addition is done as per the recommendation
- Keep monitoring the pot voltage and noise level.
- Generally current distribution after bath up is done twice per shift
- Metal addition is to be done after 18-24 hrs to build the metal pad
- In modern technology , voltage of the pot is adjusted automatically while pouring metal
- Pot redressing to be done

Metal pouring is in progress

SUPER HIGH AMPERAGE POTS

- There are four super high amperage technologies (550-660 kA)
- Advantages:-
- Lower capex, faster return on construction cost
- Higher productivity and lower operating cost per ton of metal
- Low specific energy consumption
- Technical studies of MHD, thermoelectric and mechanical modelling indicate, it is possible to operate the prebake cells even at 1000kA

SUPER HIGH AMPERAGE POTS

- Challenges :-
- A major challenge is managing magneto hydrodynamic stability especially the vertical component
- The higher heat input due to high current must be offset by heat dissipation from sides, cathode surface and the top of the anodes.
- Less bath volume is available per kA for dissolving alumina

Super-High Amperage Prebake Cell Technologies in Operation at Worldwide Aluminum Smelters

Cell Technology	SY-600	NEUI-600	AP-60	RA-550
Technology Provider	SAMI	NEUI	RTA	Rusal ETC
Company	Xinfa Group	Weiqiao	Rio Tinto Alcan	UC Rusal
Location	Liaocheng smelter, Shandong, China	Weiqiao smelter, Shandong, China	Arvida smelter, Jonquière, Quebec, Canada	Sayanogorsk smelter, Russia
Amperage kA	600-660	600	570-600	550
Number of operating lines	3 lines	3 lines	Demonstration line	Pilot Test group
Number of operating cells	630	558	38	8-Jan
Year of start up	2015	2014	2013	2016
Production- t Al per pot/day	5	4.6	4.4	4.2
Annual Production kt Al/ pot line	365	309	Unknown	7.6
Annual production kt Al /smelter	1150	900	60	unknown
Current efficiency %	94	94.3	94.6	94.5
Cell Voltage (V)	3.85	3.85	4.15	3.8
Energy Consumption Mwh/t	12205	12,166	13,072	12,000

Super high amperage line in China

Picture 2: Interior View of NEUI600kA Aluminum Reduction Potroom

Thank you

Bkkakkar@carpalex.ca